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ABSTRACT

Land-use and land-cover change (LUCC), which is a generalfiar the human modification
of the Earth’s terrestrial surface, increasingly gainsrdton in the scientific community, due
to its vast global extent and the role it plays in the Earthiespsfunctioning. About one third
to one half of the global land surface has been modified by hsimend these changes are
highly interrelated with many environmental, economic andial processes and problems.
However, studies on LUCC processes are often challengeldebgamplex nature and unex-
pected behavior of both human drivers and natural consstaMany studies tend to focus
either on the human or the environmental part of LUCC systémos neglecting the interre-
lationships and responses among these two components. &dpeygts of complexity can be
overcome by a multi-agent based approach, whose desigvsadio integrated representation
of the feedbacks, hierarchies and interdependencies abilfg@led human-environment sys-
tem of LUCC. A multi-agent simulation model (GH-LUDAS - GHahand Use DynAmic
Simulator) was developed to model this coupled human-enment system in a small-scale
catchment in Ghana, thereby providing a simulation toolredjet land-usgover patterns
as related to socio-economic indicators. Apart from puetjation, the aim of the model
is to explore alternative future pathways of LUCC under &el@ policy, demographic and
climatic conditions in order to provide stakeholders witipgort for making better-informed
decisions about land resource management.

Multi-agent based modelling is an approach to design coatioumal models for
simulating the actions and interactions of autonomouwiddals (i.e. agents) in a network,
with a view to assessing theiffects on the system as a whole. Thus, agent-based modeling
can be regarded as a bottom-up modeling approach, as theidretwad interactions of sin-
gle agents are specified, and complexity is considered togenfeom these specifications.
Following this mindset, GH-LUDAS consists of four modul&ghich represent the main
components of the human-evironment system of LUCC. The Huvhadule consists of col-
lections of human agents (i.e. farm households), which adewed with a set of attributes
and autonomous behavior templates (i.e. the Decision M)drégulating land-use related
decisions in response to the human agent’s attributes asd tf its environment. The Land-
scape Module consists of collections of individual langigcagents (i.e. land patches of size
30 x 30 m), which are characterized by biophysical attriswted ecological mechanisms,
which work in response to human decision-making and natuastraints (e.g. crop yield,
land-cover change). The Global-policy Module consists odirege of external parameters,
which allow the exploration of alternative future pathwafsLUCC, and which relate to
attributes of both human and landscape agents. The alilgyovide an integrated represen-
tation of these components is one of the strengths of thisoaph, and its flexibility allows
the upgrading and modification of processes where theserttyet been considered.

The developed model was applied to a small-scale catchméigper East Ghana,
the Atankwidi catchment, which covers an area of aboutkt&0 Spatially explicit data were
obtained from an ASTER image, digital maps, an extensive¢aner inventory and intensive
household surveys. Field data were used to specify atésbamd calibrate behavioral sub-
models of households and land patches. Considered extactais were the policies of dam
construction and credit access, demographic changesagidlrchange. Simulation outputs
consist of a spatially and temporally explicit land (c&&er map, visual graphs, and export



files of selected land-use and livelihood indicators. Tham®/enient output visualization
tools, together with the user-friendly interface of GH-LA®, allow stakeholders to simulate
and analyze selected scenarios, which can serve as a bagisdassion and communication
among stakeholders and policy-makers.

Simulation results suggest that, among others, the pofickam construction had
much less ffect on average annual income than that of credit provisilthoagh it is the
much more costly option in comparison to a credit schemethEtmore, a decline in annual
rainfall seemed to trigger a shift towards cash croppingraordfarm activities, which could
compensate for the losses in harvest caused by decreasgutpt®n. All simulated spatio-
temporal data developed by these simulations can be usédtioer scientific analyses using
GIS and statistical packages, thereby providing a basisuitiher understanding of local
LUCC processes in Northern Ghana.



KURZFASSUNG

Ein agenten-basiertes Modell zur Simulierung von Landnutzngs- und Landbedeck-
ungsanderungen im Einzugsgebiet des Atankwidi in NordosGhana

Landnutzungs- und Landbedeckungsénderungen, die dié d@rc Menschen verursachte
Modifizierung der Landoberflache der Erde bezeichnen, mfazunehmende Aufmerk-
samkeit in der wissenschaftlichen Welt, aufgrund ihredwasten Ausmalfies und der Rolle,
die sie fur die Funktionsweise der Erde spielen. Zwischeerai Drittel und der Halfte
der Landoberflache sind bereits durch menschliche Einfisgsmdert worden, wobei diese
Anderungen wichtige Wechselbeziehungen mit dkologiscli&onomischen und sozialen
Prozessen und Problematiken aufweisen. Studien, die stdbamdnutzungs- und Landbe-
deckungséanderungen befassen, reprasentieren die Katéphe&nschlicher Verhaltensweisen
und 6kologischer Bedingungen oft nur in unzureichenders@/eiViele Studien tendieren
dazu, nur eine Komponente des 6kologischen Systems, dasssehlichen wie aus umweltbe-
dingten Prozessen besteht, zu erfassen, und vernackeldsiagei die Wechselbeziehungen
zwischen diesen beiden Komponenten. Der agenten-basiexdellierungsansatz hat die
Fahigkeit, viele Eigenschaften von komplexen Systememtagrieren, und ermoglicht die
Modellierung von Riickkopplungen, Wechselbeziehungenskiaten-abhangigen Prozessen
des 6kologischen Systems. In dieser Arbeit wurde ein agdmasiertes Modell namens
GH-LUDAS (Ghana - Land Use DynAmic Simulator) entwickelgsdLandnutzungs- und
Landbedeckungséanderungen sowie zugehdrige sozio-Okedoeindikatoren in einem Flus-
seinzugsgebiet des White Volta in Nord-Ghana simuliers Dial des Modells ist sowohl die
Prognostizierung von Landbedeckungandnutzungsanderungen als auch die Evaluierung
von moglichen Zukunftsverlaufen unter gegebenen polisgecMalRnahmen, demographis-
chen Veranderungen sowie Klimawandel. Die Simulierungrsel Szenarien kann die Entschei-
dungsfindungen lokaler Akteure bezlglich Landnutzungrstiie&zen und als Ausgangspunkt
fur Diskussionen unter lokalen Entscheidungstragernetien

Der agenten-basierte Modellansatz kennzeichnet sicthdiliecModellierung der
Aktionen und der Interaktionen einzelner Individuen (iA&genten), deren Spezifikationen
in komplexe Phanomene auf Systemebene resultieren. Agbatgerte Modellierung kann
daher als ein 'bottom-up approach’ bezeichnet werden, e&gstembeziehungen nicht auf
oberster Ebene spezifiziert werden, sondern von den Pmzesdschen einzelnen Agen-
ten reguliert werden. Dieser Philosophie folgend, gliederh GH-LUDAS in vier Haupt-
module. Das soziale Modul besteht aus einer Kollektion vamschlichen Agenten, die
landwirtschaftliche Haushalte reprasentieren, und dieemier Reihe von Attributen und
Entscheidungsalgorithmen ausgestattet sind. Diese ithgoen, die innerhalb des Entschei-
dungmoduls spezifiziert sind, regulieren Reaktionen awu$@pdiche wie auf umweltbed-
ingte Attribute und Prozesse. Das Umweltmodul besteht augsichaftlichen Agenten, die
aus Pixeln von 30 m x 30 m bestehen, und die mit eigenen Ataibsowie 6kologischen
Mechanismen, die auf menschliche Entscheidungen sowieaifliche Prozesse reagieren
(z.B. Ernteertrag, Landbedeckungsanderungen), ausigésiad. Das globale Modul besteht
aus einer Reihe von externen Parametern, die von Modedmuteguliert werden kénnen,
und die Attribute von menschlichen und landschaftlicherertgn direkt beeinflussen. Die
Fahigkeit, diese Komponenten zu verbinden und miteinaadeintegrieren, ist eine der



Starken des agenten-basierten Ansatzes, und seine ktékibilaubt die Integrierung von
Prozessen, wo diese (noch) nicht berticksichtigt wordeth sin

Das Modell wurde speziell fir das Flusseinzugsgebiet deslAtidi in Nordost-
Ghana entwickelt, das eine Flache von etwa kB9 aufweist. Raumlich explizite Daten
wurden auf der Basis eines ASTER Satellitenbildes, digiit&larten, einer weitrdumigen Be-
standsaufnahme von Landbedeckung, und fokussierten Higsiséfragungen generiert. Auf
diesen Felddaten basierend, wurden die Attribute sowigahiktiven Mechanismen men-
schlicher und landschaftlicher Agenten spezifiziert unkibkiart. Die externen Parameter
des Modells umfassen MalRBhahmen, die Dammbau und Kreditvergetr&en, sowie de-
mographische Veranderungen und Reduzierung des jamlidredlerschlags. Die Ausgabe
der Modellsimulationen erfolgt durch eine zeitlich undméich explizite Visualisierung von
lokaler Landbedeckurigandnutzung, Graphiken, und exportierbaren Dateien éinewahl
an Systemindikatoren. Diese Bandbreite von Ausgabentigliten, in Kombination mit
einer benutzerfreundlichen Modelloberflache ermoglidheteiligten Akteuren, ausgewéhlte
Szenarien zu simulieren und zu analysieren, und kann zwuBsson und Kommunikation
zwischen Akteuren und Entscheidungstragern beitragen.

Die Resultate von bereits simulierten Szenarien deuteer @mderem darauf hin,
das die Strategie des Dammbaus eine geringere Wirkung actisthnittliches Einkommen
hat als die MalZnahme der Kreditvergabe, obwohl ersterdsedigeitem kostspieligere Mal3-
nahme darstellt. Desweiteren zeigt sich, dass eine Raduageles jahrlichen Niederschlags
eine Verlagerung auf marktfahigere Agrarprodukte (casp<rund nichtlandwirtschaftliche
Einkommensstrategien auszuldsen scheint, die die Redugieles Ertrags, verursacht durch
die geringere Niederschlagsmenge, kompensieren. Allel&rten zeitlichen und raum-
lichen Daten kénnen weiteren wissenschaftlichen Analys&iS- und Statistik-Programmen
unterzogen werden, und zu einer Erweiterung des Verstésehivon lokalen Landnutzungs-
und Landbedeckungsénderungen in Nord-Ghana beitragen.
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Multi-agent systems for simulating land-ysever change

1 MULTI-AGENT SYSTEMS FOR SIMULATING LAND-USE /COVER CHANGE

1.1 Introduction

Land-use and land-cover change (LUCC) also known as landgehes a general term for
the human modification of the Earth’s terrestrial surfaceodgh humans have been mod-
ifying land to obtain food and other essentials for thousaofdyears, current rates, extents
and intensities of LUCC are far greater than ever in histdnying unprecedented changes
in ecosystems and environmental processes at local, mgad global scales (Ellis, 2007).
These changes encompass the greatest environmentale®oé&éuman populations today,
including climate change, biodiversity loss and the paluiof water, soils and air. Moni-
toring and avoiding the negative consequences of LUCC vgitgaining the production of
essential goods and services has therefore become a miajity@f researchers and policy
makers around the world (Ellis, 2007).

In order to understand the nature of LUCC, it is importantlarify terminology
and definitions used in the field of LUCC research. While laowkc is the biophysical state
of the Earth’s surface and immediate subsurface, the tamthuae refers to the involvement
of both the manner in which the biophysical attributes of ldrel are manipulated and the
intent underlying that manipulation - the purpose for whibk land is used (Briassoulis,
2000; Turner et al., 1995). This way, land cover means thaiphl chemical, or biological
categorization of the terrestrial surface, e.g. grasslemdst, or concrete, whereas land use
refers to the human purposes that are associated with thext, @qg. raising cattle, recreation,
or urban living (Meyer and Turner, 1994).

In the analysis of land-use and land-cover change, it isrsessary to depict the
term of change in this respect. In land-(csever research, there are two forms of LUCC:
conversion (i.e. the complete replacement of one land+dawnel-use type by another) and
modification (i.e. more subtle changes thffeet the character of the land coftand use
without changing its overall classification) (Turner et &093). The conversion of forest to
crop land is an example of land-cover conversion, whereastiange in the composition or
health of a forest can be regarded as a modification withgl#md-cover class (i.e. forest).
Accordingly, changes in land use can be in form of both caiges and modifications. As
the replacement of one agricultural type by another (eagnfrainfed to irrigated agriculture)
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can be seen as the conversion from one land-use type to the othdifications of one sin-
gle land-use type might include, for instance, the intecaiibn of crop production, without
changing its land-use classification.

The recognition of the importance of such changes in landanseland cover for
the Earth system’s functioning already emerged in the mitD$9when studies revealed the
significance of the relationships between land-cover aimoaté change. At this time, it was
recognized that land-cover change may induce changes ialltedo, and thus modify the
surface-atmosphere energy balance, resulting in regamiglobal climate change (Otter-
man, 1974; Charney and Stone, 1975). In the subsequentetedaavas discovered that
land-cover change does not only modify climate through aghkd energy balance, but also
through the creation and especially diminishment of caioks, thus contributing to global
carbon emissions (Lambin et al., 2003). During the follgyvyrears, many other conse-
guences of land-ugeover change were identified, showing severe impacts orctigystem,
including soil degradation, desertification, a loss of biedsity, declining human health, and
the threat to the ability of biological systems to suppornlan needs (Vitousek et al., 1997).
As the Earth is a complex system of biogeochemical cycleseseagy fluxes, which are
largely regulated by the land surface, the understandidgr@nitoring of processes related
to land-usgcover change is crucial to the understanding of global dyosm

In the following, we will depict the five most well-known fosrof LUCC in order
to understand the relevance and the magnitude of land-elfaogesses. Deforestation is one
of the most commonly recognized forms of land-cover chaigdiams, 2003). According
to FAO (FAO, 2001), deforestation occurs when forest is eoied to another land cover
or when the tree canopy falls below a minimum of 10%. On thesbafsthis definition,
it is estimated that the world’s natural forests decreaged@l million hectares per year
on average during the 1990s (FAO, 2001). Until today, that iess of about 5 % of the
natural forests that existed in 1990. The reasons for tldsateon are manifold and are
highly dependent on the region. Whereas in Latin Americgdeacale forest conversions
are mainly due to the expansion of livestock agriculturenfban et al., 2003), deforestation
in Africa is mainly a result of cropland expansion. In Asiateinsified shifting agriculture,
including migration into new areas, and logging explain hadshe deforestation (Achard et
al., 2002).
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The consequences of deforestation for the ecological syate manifold: First, deforesta-
tion can lead to soil erosion or impoverishment, especiallyopical areas where soils tend
to be thin and nutrient-poor. Second, deforestation islihio habitat loss, which is a leading
cause of species endangerment and biodiversity losscplarty in humid tropical forests.
Third, it affects the hydrological cycle through changes in evapotreatggn and runé. And
last but not least, deforestation, and particularly fobeshing, contributes to greenhouse gas
emissions that bring about climate change (SEDAC, 2002).

A major trend of global LUCC is the expansion of agricultueadd. Currently, agri-
cultural land covers about a third of the global land surfacel has expanded into forests, but
also steppes and savannahs, to meet the growing demanadiLfambin et al., 2003). Such
conversions involve a change of the whole local ecosysteamebanging animal habitats and
faunas, thus being a direct threat to biological diverskiipwever, not only the conversion
to cropland plays a role in global change, but also the imtgnmsagricultural management.
Historically, humans have increased agricultural outpainty by bringing more land into
production. This process of agricultural expansion waslggdly replaced in the 1960s by a
process of intensification in some regions of the world, ap.increase in food production
per hectare, being mainly achieved through mechanizedé|ifertilizer use and irrigation.
Such agricultural practices contribute to carbon emisstbrough several mechanisms: the
direct use of fossil fuels in farm operations, the indires¢ wf embodied energy in inputs
that are energy intensive to manufacture (e.qg. fertilizensd the cultivation of soils resulting
in the loss of soil organic matter (Ball and Pretty, 2002)ttkermore, the use of freshwater
for irrigation and the use of fertilizers lead to a modificatiof the water and nutrient cycles,
especially the nitrogen cycle.

Natural vegetation cover has not only given way to cropldnd,also to pastures,
which are defined as land used permanently for herbacecage@rops, either cultivated or
growing wild (FAO, 2004). The distinction between pastund aatural savannah or steppes
is not always clear. However, FAO statistics suggest thatipastures are located in Africa
(26 % of the global total of 35 million ha), followed by Asiag26) (Lambin et al., 2003).
During the last decade, pastures increased consideraBlyianand the former Soviet States,
which is mainly due to the tremendous increase in the den@nddat (Mooney and Neville,
2005). To meet the growing demand, total meat productiomagepted to double by 2020
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(Mooney and Neville, 2005). In response to this increasdysirialized animal production
systems are proliferating, and consequently result in ¢dexnpegative externalities with re-
spect to the environmental sustainability of livestockdarction.

The resulting concentrated waste production from thesesysand its #ects on
terrestrial and aquatic ecosystems is a serious mattdr,stored liquid manure producing
over 13 million tons of the greenhouse gas methane per yeaH&hn et al., 1997). In
addition, the massive global trade in grains for animal feasigreatly altered regional water
and bio-geochemical balances.

Finally, urbanization can also be ranked among the mostkvelvn frontiers of
LUCC. Since urban areas occupy a relatively small fractioine Earth’s surface (i.e. 2 %)
(Gruebler, 1994)), this relatively small fraction of urlised areas may lead to the miscon-
ception that urbanization can be ignored in land-changaiesuHeilig, 1994). In reality,
urbanization fects land change elsewhere at a large scale through strikagés between
urban and rural areas (Lambin et al., 2001). Furthermoisnealiving standards of the grow-
ing urban population around the world tend to raise the coypion expectations, leading to
local and global changes in land-use intensity.

When aggregated globally, such LUCC do not only endangebitbiic diversity
world-wide (Lambin et al., 2001) but also contribute to opes in the energy, hydrological
and biogeochemical cycles of the Earth’s system, theredndig to climate and ecosystem
change, thusfiecting the ability of biological systems to support humaadse(Vitousek et
al., 1997). It is therefore of utmost importance to undemdtédne processes involved, to an-
ticipate future land-ugeover patterns, and to find strategies to mitigate the adverpacts
of such land-ugeover changes. The ability to project future LUCC and itse@cological
consequences depends on our ability to understand thequawsgnt, and future drivers of
land-use and land-cover change (USGCRP, 2003). HoweVatiomships between driving
forces and phenomena of LUCC are highly complex and inteewpthus hampering the
establishment of a general theory of these relations. Aemyit to derive a theory through
the identification of specific typical pathways of land-ee@er change has been made by
Lambin and Geist (Lambin and Geist, 2006), based on a reviel@? case studies around
the world. However, instead of repeating these pathwaysdantbnstrating typical drivers
of land-use change, we will rather focus on the aspects afdheplexity that is exhibited by
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such processes of land-use and land-cover change, as teestamdling of this complexity is
the first step for a reliable representation of the involvextpsses.

1.2 The complexity of the coupled human-environment systemf land-usgcover change

The complex nature of land-ysever change is mainly due to the complex way in which
humans and the environment interact in response to each othereby these interactions
are regulated by a wide range of factors influencing landdesgsions at dferent temporal
and spatial scales. Feedback mechanisms among the conpahehis coupled human-
environment system even enhance the level of complexigsipty resulting in an emergent
land-usgcover pattern, which cannot be explained by an analysissoditigle constituents of
the system (Parker et al., 2003).

As an understanding of the way such a system works is crumial feliable anal-
ysis or synthesis of land-uy&®ver change processes, in this chapter this complex nature
land-use systems is characterized. Landamer systems are complex, and the notion of
complexity has consequences for the way the system shoulddagibed (Kok, 2001). How-
ever, complexity science is still in its infancy (Goldsteir®99), and there is no common
definition of complex systems shared by the various involdsdiplines (Manson, 2005).
With respect to land-use systems, Parker et al. (2003) defimplex systems as 'dynamic
systems that exhibit recognizable patterns of organiaat@ross spatial and temporal scales’.
In complexity science as well as in ecological sciences,aterity is often discussed in the
two different dimensions: functional and structural complexige(8andte, 2007; Lambin
and Geist, 2002; Kok et al., 2000). In the following, we willsmarize the characteristics of
LUCC complexity with regard to both aspects.

1.2.1 Functional complexity

According to Marks (2007), functional complexity of a systes the complexity of the map-
pings from inputs to outputs, whereby the system itself garded as a black box. More
precisely, the complexity of the mode of operation of thaeysis examined by determining
the dfect of variation of the input on the system output (Bandt&73@vithout considering

the internal mechanisms. Within land-use system resefnobtional complexity thus refers
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to the complexity in which variations of driving forces (i.explanatory factors) of land-use
change influence land-ysever patterns. This complexity is driven by the large g
explanatory factors, their variation in both time and sp#uereby being episodic or progres-
sive, and their high level of interlinkages, thus having aesgetic &ect on land-useover
patterns. In the following, we will outline the complexity these driving forces for LUCC,
and justify the significance of this complexity on land-feseer patterns through examples.

Multitude of driving forces

Land-use change is always caused by a multitude of intagatdictors originating from dif-
ferent levels of organization of the coupled human-envitent system (Lambin et al., 2003).
At the local level, causes of land-usever changes involve a physical action on land cover
such as agriculture, forestry and infrastructure contittag¢Lambin and Geist, 2006). Such
proximate causes generally operate at the level of indalitirms, households or communi-
ties (Lambin et al., 2003; Mather, 2006). At the regional limbgl level, underlying factors
are fundamental forces that underpin such proximate cacsesring a wide range of politi-
cal, economic, demographic, technological, cultural angloysical factors. Changes in any
of these indirect drivers usually result in changes in onenore of the proximate factors,
thus triggering land-ugeover changes (Lambin and Geist, 2006). Due to this widestari
of driving forces operating at flferent scales and a frequent sensitivity of land/ameer pat-
terns to any of these forces, the output-input relationshefdoupled human-environment
system underly a high level of complexity.

Multiple causality in LUCC

Driving forces of land-useover change not only include variables from a wide rangaof f
tors, but also are highly interrelated with each other. Achsunderlying forces do not only
influence proximate causes in a mediated fashion, but aee sfiaped themselves by other
factors. For example, population increase in a given ardten @onsidered an underlying
cause of land change - may be amplified or modulated by egistinhanging social norms or
by fertility or resettlement programs, which may in turn h#uenced by changes in knowl-
edge and policy at national and international levels (Lananid Geist, 2006). It is helpful to
recognize that some factors concern the motivation to alheavior, while others function
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in contextual ways, often filtering thefects of other factors (Turner, 1989; Moran, 2005).
The interplay and interrelations between such drivingderamplify the complexity of the
system functioning, resulting in land-ysever patterns often flicult to predict.

Temporal and spatial variation of driving forces
Driving forces of land-use and land-cover change are not bighly interrelated, but also
can vary both in time and space, whereby the strength of thieirrelations is also tempo-
rally and spatially variable. An example for the spatiali@aility of driving forces and their
effect on land use is given by Lambin and Geist (2006) who deseaitypical pathway of
land-use intensification dependent on local market oppaits and population pressure. As
such, land scarcity-driven agricultural intensificatiators in economies that are not fully
integrated in the market, and is usually linked to poputagjoowth and density (Lambin and
Geist, 2006). Thus, regional variations in market oppatiesiand population dynamics may
lead to totally detrimental outcomes in agricultural irgification, and ultimately land-use
and land-cover patterns.

With respect to the temporal variation of driving forcesinate change and its ef-
fect on land-useover is a widely cited example. For instance, it has beemvshbat a
reduction in rainfall in West Africa shortens the length lo¢ fgrowing period and has a con-
siderable impact on potential crop yields and their vatighiVMoortman, 1998), thus having
a direct dfect on the survival strategy of farming households and altity land-use choice.
Furthermore, it is important to distinguish between gradum episodic changes (Lambin
et al., 2003). Episodic changes show periods of rapid andpalwhanges and can have a
completely diferent impact on land use than progressive changes. Sudhtetmarchanges,
often caused by the interaction of climatic and land-usfachave an important impact on
ecosystem processes. For example, droughts in the Afrigael @nd their #ects on vegeta-
tion are reinforced through a feedback mechanism thatwesdband-surface changes caused
by the initial decrease in rainfall (Zeng et al., 1999).

1.2.2 Structural complexity

In contrast to functional complexity, structural comptgxiefers to the level of complexity of
the internal functioning of the system (Bandte, 2007). Witticology and land-use system
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sciences, structural complexity of LUCC systems is usudahicribed by three characteristics
of internal complexity, comprising interdependencieselegeneity, and nested hierarchies
(Arthur et al., 1997; Epstein, 1999; Holland, 1998; LeBardd01; Manson, 2001). Many
examples of these three key sources of complexity can beifieenin human-influenced
landscapes (Parker et al., 2003). Furthermore, an imgdgature of LUCC complexity is
the evolvement of emergent phenomena at the higher scalasdn and biophysical sys-
tems. The term 'emergence’ refers to system’s propertiagisate not analytically tractable
from the attributes of the internal components (Baas and Echen 1997). More intuitively,
an emergent property may be defined as a macroscopic outesuoiégmg from synergies and
interdependencies between lower-level system companéntbe following, a description
of these four key sources of complexity with respect to lasd-and land-cover change is
given.

Nested hierarchies and scale dependency

It has long been apparent to ecologists that ecologicaésysare hierarchically structured
(e.g. Egler, 1942; Schultz, 1967). Hierarchy, in matheoadtierms, is a partially ordered
set, which is a collection of parts with ordered asymmetilationships inside a whole. In
less mathematical terms, the system works as an orgamizetitevels at diferent scales,
whereby phenomena at a certain level of scale are explaiypguidzesses operating at the
immediate lower level, but are, on the other hand, constthby processes operating at the
immediate higher level (Le, 2005). The result is a so-cdltedstraint envelope’ among the
involved hierarchical levels.

An example of such a 'constraint envelope’ is the reproadundiiehavior of a single
organism. The internal reproduction process of the orgamsdetermined by the operation
and interaction of the single subcomponents of the orgagnigmiie the actual reproduction
behavior is constrained by characteristics of the wholeufadipn made up of all organisms
(e.g. population density). LUCC systems are usually deedras nested hierarchies among
human and natural subsystems, which involve levels congistf, and containing, lower
levels. As such, individual waterways join to define nestedensheds, and assemblies of
individual species members aggregate to form communities.

Processes involved in the functioning of the system uswglgrate along the fier-
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ent levels of this organized hierarchy, whereby processtgdigher levels proceed slower
but to a larger extent, and processes at the lower levelepdofaster but to a smaller ex-
tent (Easterling and Kok, 2003). In LUCC, such lower-levelgesses might refer to direct
land-use decisions made at the household level, which hreveraediate but short-term con-
sequence on the local environment. Higher-level processehe other hand, might include
the aggregated land-use behavior of the whole populatitnchwinfluences land-use and
land-cover patterns at the landscape level, but at a lowese. p@his diference of type and
pace of processes induced by thfafience of scale is called scale dependency.

Evidence from case studies suggests that these scaleedgpgmocesses are also
driven by scale-dependent factors. Variations in explamyatariables of land-use change
across scales usually follow a consistent pattern: at farates such explanatory factors
comprise mostly social and accessibility variables, atl$@ape scale such factors might in-
clude topography and agro-climatic potential, and at tlggoreal to national scale climatic
variables as well as macro-economic and demographic g&actor be identified as land-use
drivers (Veldkamp and Lambin, 2001). For the establishroéatrealistic representation of
processes of land-use change, the existence of hierartieescale-dependency of processes,
and drivers operating atfiierent scales of this hierarchy need to be considered.

Interdependencies and feedback loops

Interdependencies exist among all components of the cduplenan-environment system,
both in time and space. These interdependencies exist #henigorizontal axis as well as
along the vertical axis of the nested hierarchy levels (Liangb al., 2003). On the human
side, land-use decisions might be influenced by both the leschistory of the land manager
and those of others (temporal interdependency), and byttifileugies of their surrounding en-
vironment (spatial interdependency) (Parker et al., 2008se spatial influences on agent
behavior may include flows of information filision of technology, spatial competition, local
coordination, social networks, and positive and negatkteraalities among neighbors (see
Case, 1991; Irwin and Bockstael, 2002; Krider and Weinb2897; Lansing and Kremer,
1993; Miyao and Kanemoto, 1987; Parker, 2000; Ray and Wikial999). On the bio-
physical side, spatial interactions may include slope gsees, up- and down-streaffeets,
connectivity of natural habitats and ecological edffeas (Parker et al., 2003).
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Webs of interdependencies among system variables and camgsdform a complex network
of transforming feedback loops (Eoyang, 1997). These laaws/ material, energy and
information from one system component to another (EoyarmhBerkas, 1998). Positive
feedback loops tend to amplify system behavior, whereaativegfeedback loops usually
counteract the amplification as stabilizers of the systemexXample of a positive feedback
loop is the downward spiral of frontier deforestation. Ingnaints might clear forest for crop
production, which causes the expansion of agriculturavidiels. This inappropriate use of
forest soils often results in land degradation and low saiilfty, which finally amplifies the
deforestation process.

Such feedback loops in LUCC systems bring forth that drieéland-use change
can themselves be modified by land-use changes, i.e. theyapeairely exogenous but also
endogenous to the system (Lambin et al., 2003). For instalereographic changes can re-
sult in changes of land use and land cover, but these chanigés imfluence demographic
patterns in turn. In general terms, the changes in ecosygtes and services that result
from land-use change lead to important feedbacks to themrinf land-use change (Lambin
et al., 2003), thus again causing changes in land-use psitter

Heterogeneity
The consideration of heterogeneity within LUCC systemdtisroimportant to ensure a re-
alistic representation of the landscape as well as of theanusgents. For example, hetero-
geneity among land managers can be reflected figrdinces in values, ability, resources and
experience, which might have an influence on land-use a&ssiOn the environmental side,
spatial heterogeneous factors important for land-usesiabes might include dierences in
soil quality, water availability, topography and vegetat{Parker et al., 2003). This hetero-
geneity of both land managers and the biophysical enviromméht also change over time,
due to interactions among these two components.

When heterogeneity and interdependencies are combinechodal, analytical so-
lutions may be very diicult to obtain. The adoption of a new technology is such amgta
in which both agent heterogeneity and spatial interdeparids are important (Parker et al.,
2003). Here, the spatial heterogeneity is representeddoyethiability of risk aversion among
land managers to adopt the new technology. The informafitressuccess or failure of those
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land managers who take the risk may spread among the neiggtb@nd managers, the pro-
cess of which represents spatial interdependency. Theisptitial distribution of agent types
with different risk aversion over space may influence the spatiateat@doption. This way,
regions of adoption and non-adoption may emerge as a rddattal heterogeneity and spa-
tial interdependencies between land managers. In modslgtdture both heterogeneity and
interdependencies, usually many possible stable egailéxist. These equilibria are usually
dependent on the initial state of the model, which is calleith plependency. With respect to
the example of technology adoption, the presence of a slagtemanager willing to adopt
the new technology is required to initiate a cascade of telclyy adoption among neighbor-
ing land users. This way, two equilibria are possible: onthadoption, and one without,
dependent on the initial state of the model in terms of hgtmeity.

Emergent phenomena

If researchers are specifically interested in modeling tmepiex dynamics of a LUCC sys-
tem, they also may be specifically interested in understayidie macroscopic, or emergent,
phenomena that may result. Emergent phenomena are dekaslaggregate outcomes that
cannot be predicted by examining the elements of the systésolation. Emergent phenom-
ena exhibit structures that are not explained by lowertldyaamics and typically persist
beyond the average lifetimes of entities upon which theybaik (Crutchfield, 1994). More
intuitively, an emergent property may be defined as a maopsmutcome resulting from
synergies and interdependencies between lower-levamystmponents.

With respect to LUCC, land-use change at the landscape sanlbe regarded as
the aggregation of the multiple small land-use changes;htginforce or cancel each other
(Lambin et al., 2003). These small changes are the resufteadi¢cisions of land managers
under certain socio-economic and environmental conditiaumich are, in most cases, made
independently without a central direction. Thus, land-cisenge is a complex large-scale
spatial behavior that emerges from the aggregate interectf less complex land managers
(Lambin et al., 2003). This way, the behavior of the coupledhhn-environment system
at the landscape scale can be regarded as an emergent phenaesulting from low-level
actions and interactions, which makes the behavior of teesyunpredictable in most cases.

11
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1.2.3 The importance of modeling LUCC

Given the diversity of complexity in which LUCC systems agter, we will argue in this sec-
tion why a modeling approach can be a useful tool to integmateconsider such complexity,
thereby providing a tool to understand and predict landeas®er changes. The analysis of
the multiple interactions of land-u@®ver change (see Introduction) with the Earth system
suggests that the understanding of the role of LUCC withimdiistem deserves considerable
attention. Based on the urgency of monitoring land/ameer change processes, as they are
highly interrelated with bio-geochemical global and regibcycles, soil and forest degra-
dation, and biodiversity, reliable approaches to undedstnd predict LUCC processes are
needed. Based on this background, the two main targetsnwiitiei LUCC research com-
munity can be summarized as follows: i) the projection céralative pathways in the future,
and ii) the development of hypotheses about the functiooindg) CC systems, whereby both
require the understanding of involved processes, whicleyd high level of complexity.

Although humans build 'mental models’ when faced with coexgphenomena, the
ability to fully capture all aspects of complex systems altidhately make predictions is lim-
ited, as human mental models tend to simplify systems inquéar ways (Costanza and Ruth,
1998). Humans base most of their mental modeling on quaktaather than on quantita-
tive relationships, linearize the relationships amondgesyscomponents, disregard temporal
and spatial lags, and treat systems as isolated from theowwuings (Costanza and Ruth,
1998). When problems become more complex, and when quargitalationships, non-
linearities and time and space lags are important, as isabe for LUCC systems, human
mental models need to be supplemented. When models arevithilkonsideration of these
different aspects of complexity, they can serve as useful toolsderstand and predict future
land-us¢cover patterns.

Reliable projections of alternative pathways into the fatare important, as in-
creasing evidence suggests that a proactive land managémtead of a reactive one is
needed. Proactive management, in contrast to reactivegearent, which tries to reverse
environmental damages that occurred in the past, attemfiteitstrategies to avoid damage
in the future. This current shift to a proactive view is basedthe evidence that environ-
mental damage, once done, is verffalilt to undo (Le, 2005), implying that maintaining
ecosystems in the face of changes requires active managénernforeseeable future (Vi-
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tousek, 1997). Models, in this respect, can serve as ussild to predict future patterns of
land-usgcover, and possibly help to find strategies to mitigate Riagiverse impacts on the
natural resource base, or even enhance the sustainability ase of these resources.

Apart from the assessment of alternative future pathwal8)6fC, the second main
target that can be approached by models is to provide a tomstohypotheses about the
LUCC system functioning. Authors within the LUCC researdmenunity argue that the
understanding of land-use processes still lacks a validrfh@Couclelis, 2001), which also
impedes the development of reliable LUCC models. HoweWigagh current models might
rely on a weak theoretical basis, models in turn are oftereéulitool to develop the under-
standing of LUCC processes, thereby helping to establibleary for a future generation of
models. In contrast to models used to predict future pattemhich try to be as realistic as
possible, explanatory models may be hypothetical, thefetlysing on system aspects that
are intended to be explored (Parker et al., 2003), theramyrigg others. Such models may
be used to understand the key processes underlying larslsigans (Parker et al., 2003), to
test the sensitivity of land-ugmver patterns to variations in driving forces (Veldkampl an
Lambin, 2001), and to assess system stability.

1.3 Modeling LUCC

Due to this urgency to project and understand land-use ehpragesses, LUCC modeling
has attracted more attention in recent years in researds fielated with global environ-
mental issues (Shibasaki, 2003). A range of LUCC models bar Heveloped to meet land
management needs, and to better assess and project treerfluof LUCC in the function-
ing of the Earth system (Veldkamp and Lambin, 2001).

As land-use change usually depends on both the physicaloament of the in-
volved actors and their socio-economic context, procesiSlesnd-use change are often mod-
eled as a function of a selection of variables from both dosyaacting as driving forces
of land-use change. Such driving forces are important ihnaalli-use change models, but
their selection and the quantification of the relations leetwthe driving forces and land-use
change is very much dependent on the modeling approachrthos¢his chapter, we will
present various types of modeling approaches and themgitre and limitations, and will
give a reasoning for using an agent-based approach wittsistindy.

13
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1.3.1 Approaches to modeling of LUCC

There are dferent approaches to modeling of LUCC. Based on model puspaseerlying
theories, types of modeled land uses, and the spatial angbtaiievels of analysis, Bri-
assoulis (2000) distinguished five main categories of n&dglequation-based models, ii)
system dynamics models, iii) empirical-statistical mag@f) cellular automaton models, and
v) agent-based models. In the following, we will give shasdriptions of each of these ap-
proaches, and analyze their capability to integrate strattomplexity.

Equation-based models

Equation-based models are models that capture systenctérasacs by identifying system
variables and describing the system with sets of equatielatimg these variables (Sun and
Cheng, 2002). The evaluation of these equations produesesvfiution of the system char-
acteristics over time (Huigen, 2003). As equation-basedetsotend to make extensive use
of system-level characteristics (Huigen, 2002), the ireggn of heterogeneous and interact-
ing low-level entities is generally not considered (Sun &heng, 2002). Interaction usually
takes place among the system-level variables, althougtatitre review indicates that hi-
erarchies or dferent levels of organization can possibly be integratedtoesextent (e.g.,
Enge-Rosenblatt et al., 2007). Another major drawback ohsuodels is that a numerical
or analytical solution to the system of equations must bainbt, also limiting the level of
complexity (e.g. feedback loops) that may practically bi#t bito such models (Parker et al.,
2003).

System dynamics models

System models represent stocks and flows of informationema&tand energy as sets of

differential equations linked through intermediary functiand data structures (Gilbert and
Troitzsch, 1999). Such models, which are usually brokem digcrete time steps, can repre-
sent human and ecological interactions, thus allowinglfeekis to operate within the system.
Although these kinds of models can address the shortconoihgguation-based models in

terms of representing feedbacks and dynamic processgsaldeeoperate at an aggregated
level (Parker et al., 2003). As such, heterogeneity andantmns are only considered at a
very coarse temporal and spatial resolution. Howeverairto equation-based models, such

14
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models dfer the possibility to integrate hierarchical structures.

Empirical-statistical models

The application of statistical techniques to derive thehmaatatical relationships between
dependent variables and sets of independent variablesdisspiead in modeling socio-
economic and other systems of interest (see Colenut, 19681R73). Empirical-statistical
models find a set of best-fit model di@ents that express a statistical relationship between
a dependent variable (e.g. LUCC) and a series of independgnbles (representing drivers
of LUCC). Multiple linear regression techniques are geltetesed to extract transition prob-
abilities among the states of the landscape (BriassoW@3)R which are dependent on the
selected drivers. The strengths of such an approach aréititg o provide information on
the key drivers of LUCC and the ability to enter and analyza davarious scales.

The disadvantage of such statistical models is that thegatdre transferred spa-
tially in the sense that a regression model that fits well enrggion of the variable space
usually performs poorly outside that region. Furthermtrese models require a data set on
the rates and quantities of change. Thus, these models Brewted to predict changes in
land-use intensity where such changes have been measuethevecent past (Briassoulis,
2000).

With respect to the representation of structural compjesiich models can take
into account spatial heterogeneity and interaction (Rarkal., 2003) at a single hierarchical
level of organization (e.g. Furrer et al., 2007). Howeveedbacks across scales and system

components cannot béfectively modeled (Parker et al., 2003).

Cellular automaton models

Cellular automaton models consist of a regular grid of celieh in one of a finite number of
states, where cell transitions are based on the state ofithent cell and the states of neigh-
boring cells. Such 'neighbors’ can be very broadly defined] may include multi-scale
influences. These models are very strong at representiad $patial processes of LUCC,
but on the other hand they may place too much emphasis ondheifderactions, and not
suficiently represent the human behavior regarding land uséoAgh cellular modeling
techniques fier greater flexibility for representing spatial and tempdyeamics, they have
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limited ability to reflect feedback mechanisms, as thesayaos are built on stationary tran-

sition probabilities (Parker et al., 2003). Apart from thiwback, some extension forms
of cellular automata can take into account heterogeneitii@ofnodeled landscape, integrate
levels of hierarchy (see Adamides et al.,1992), and consideraction processes spatially

and across hierarchy levels.

Agent-based models (ABM)

Most significant, none of the above modeling techniques egresent the impacts of het-
erogeneous, autonomous and decentralized human deoisikimg on the landscape (Parker
et al., 2003). Many of the limitations faced by other modgliachniques with respect to a
realistic representation of complexity can be overcome BAnodels.

Agent-based models of land-uksend-cover change (ABMLUCC) usually consist
of two key components. The firstis a cellular model that repnés the landscape under study.
This cellular model may draw on a number of specific spatiadletiog techniques, such as
cellular automata, spatialftision models, and Markov models. The second component is an
agent-based model (ABM) that represents human decisidagnand interactions (Parker et
al., 2003). As such, an agent-based model consists of autmmdecision-making entities
(agents), an environment through which agents interaés rinat define the relationship
between agents and their environment, and rules that dieersequencing of actions in
the model. Agent-based models are usually implemented #sagent systems (MAS), a
concept originated in the computer sciences, which all@wva fvery dficient design of large
and interconnected computer programs.

The potential of MAA_.UCC models is their capacity to represent the co-evolution
of humarienvironmental systems regarding land/aseer change, by integrating human-
related processes with those of nature. By modeling suchriying processes, the emerging
dynamics and complexity of this coupled human-environnsstem can be represented
within the model. Furthermore, all aspects of structurahplexity can be easily integrated
by using MAS, including the heterogeneity on both the laagecand human side, envi-
ronmental and human hierarchical levels, and spatial amgpaeal interactions among all
components and across hierarchical levels. Furthermeeepficks within and between the
environmental and Human Module can beetively integrated.
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1.3.2 Opportunities for MAS/LUCC

In general, the benefit of MAS over other modeling technigsekie to its ability to capture
emergent phenomena, its ability to provide a natural dgson of a system, and its flexi-
bility, i.e. the easiness with which processes and compsream be integrated (Bonabeau,
2002). The latter quality is perhaps the greatest advardBiAS/LUCC models. Because
these types of models do not need to be solved for closed-#omatytical solutions, details
critical to the system under study can be easily built in.tlr/@nmore, such flexibility allows
researchers to design and execute experiments to expteraalve causal mechanisms, by
modifying system processes and components (Parker e0aB) 2

In contrast to many other LUCC modeling approaches, the huamal the envi-
ronmental part as well as their interrelations can fieotively modeled with MAS. Other
modeling approaches tend to focus on either part of the LUgBem, thus neglecting the
interactive nature of the coupled human-environment systeLUCC. Within MAS, land-
use change rather emerges from the interactions amongusacmmponents of the LUCC
system, which then feeds back to the subsequent develomh#mise interactions. Thus,
agent-based modeling has the ability to represent the dgnand non-linear pathway of
land-usgcover change.

Furthermore, agent-based models do not impose the rethifmsamong system
components, but rather represent individual behaviorclvinesults into emergent patterns
at system level through interactions (Huigen, 2003). Thay,veomplexity is modeled from
the bottom-up, which makes MAS models being increasingtpgeaized as useful tools for
building a sound theoretical framework to deal with the ctemipy of LUCC (van der Veen
and Otter, 2001; Bousquet and Le Page, 2004). Apart fromathiigy to capture complex
system behavior, MAS can provide a natural description efrthman-environment system.
Its architecture makes it possible to map the concepts anctstes of the real world into the
model in ways that preserve natural objects and connedBorsabeau, 2002). Especially the
rapid development in spatial information technology (€4S, remote sensing) facilitates a
realistic specification of the environmental componentwM#AS computer platforms (e.qg.
NetLogo) allow the integration of such a GIS database fodd$aape specification. User-
friendly programming platforms facilitate the programpiof agent action and interaction,
and allow model users who are not familiar with the model ctudeasily specifiy model
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parameters and run simulations.

Due to these strengths, MASJCC models have been recognized as a promising
tool to address the complexity of the coupled human-enwi@mt system in LUCC model-
ing (Parker et al., 2003). Within the LUCC research comnyimécent progress has been
made from abstract MABUCC models to more comprehensive presentations of reddwo
land-use systems. The flexibility in the specifications afreg allows the incorporation of
social and ecological processes, and models and approathemy disciplines can be in-
tegrated within MAS. This interdisciplinarity aims at ingwing a realistic representation of
the LUCC system, as land-ysever change involves the interplay of social, economic and
environmental processes.

However, although this approach fulfills many of the reguieats for reflecting
real-world processes, this approach also has some drawbablch will be analyzed in the
next section. Furthermore, all of the above models have sfi@ingths, and the choice of the
modeling approach is highly dependent on the nature of tiexbbf investigation. Finally,
based on the analysis of the shortcomings and strengths bf &R its suitability for our
purposes, we will argue why we decided to use a multi-agaseth approach to study land-
usgcover change phenomena in our study area, a small-scaleoatt in Upper East Ghana.

1.3.3 Challenges of multi-agent systems for studying LUCC
Although it has been argued that MAS is highly suitable fodeling complex LUCC, there
have still been many challenges in its application for rgaftd land-use systems. Due to
the high level of flexibility in the specification and desighMAS, a researcher may easily
be trapped in modeling causal and non-causal factors,rdrared processes, important and
irrelevant (Huigen, 2003). In addition, model outcomesehtvbe treated with caution, as
'In every case of simulating complex adaptive systems, thergent properties are strictly
dependent on the rules preprogrammed by the investigdtogd] et al., 1999). Thus, an
in-depth investigation and understanding of the circuntsta and their relevance to land-use
processes in the study area needs to be obtained beforahandid a biased selection and
design of drivers and processes.

The second challenge of MAS models - if they are meant to bistiea is the great
effort involved in programming and data acquisition, as theabih of single individuals
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needs to be modeled explicitly, being mostly dependent oida vange of factors. Relevant
and stficient data are usually not available and have to be colleéedhermore, as agent-
based models aim to explicitly represent human decisiokimgathe problem of modeling a
highly complex, dynamic spatial environment has shiftetheoproblem of modeling highly
complex, dynamic decision-making units interacting witattenvironment and among them-
selves in highly complex, dynamic ways (Couclelis, 200Tjistway, the computational and
modeling éfort of MAS might exceed that of other approaches.

Third, the validation and verification of agent-based LUCGdels is a diicult en-
deavor. Due to the huge parameter space, the model outcamestde captured easily and
thus cannot be easily analyzed and validated by formal ndstkiduigen, 2003). Further-
more, alongside the increase in computational power anishtheased ease of programming,
the complexity of models has increased manifold. This iaseel complexity and the lack of
available data for validation hamper the assessment ofdyeed of realism of MAS models.
Therefore, assumptions underlying the functioning of tleelet have to be clearly stated and

justified.

1.4 Problem statement and research objectives

As we have discussed the urgency of predicting and undeélisgfuture land-use and land-
cover change and the subsequent needs for reliable siorufatdels, the target of this study
is to develop an operational LUCC model, which, in order twvses a tool for testing the
impact of policy interventions, should represent landureeesses and their relation to poli-
cies in a realistic way. Since farmers in Africa directly dad on the natural resource base
for their living, the prediction of future land-ug®ver patterns and related income patterns in
Africa is an issue of major importance. In order to invesighe nature of LUCC and related
ecological services, we selected a study area in Northeam&lthe Atankwidi catchment in
the Upper East Region, as a case study for land-use reladbteprs and prospects in West
Africa. Due to the reliance of local farmers on ecosystemises, both future LUCC and
income structures need to be assessed. Furthermore, intorbe able to mitigate nega-
tive externalities of the local use of natural resources tanehhance their sustainable use,
the impact of policy interventions on future land-use armbme structures also needs to be
estimated. Therefore, the goal of this study is to developadistic simulation model for
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land-use and land-cover change and income structuresdoktdmkwidi catchment of Up-
per East Ghana, which can be used to explore alternativevpgshinto the future caused by
policy interventions.

The choice of the modeling approach for this endeavor ngt depends on the lim-
itations and strengths of the various techniques, but alsb® scale of analysis, comprising
spatial resolution and extent. As in agricultural areasiét@sions made by man are the main
influences on land-ugmover patterns (Mander and Jongman, 1998), it is advantsgeali-
rectly simulate the decisions of land managers, resultirymodel resolution at farm level.
However, with such a fine-scale resolution, the spatialreéxté the area under observation
is usually limited to small areas. The study area fulfills ttéquirement, as with an area of
159kn? and a population size of 6400 households it is relativelylsiiais allowing such an
individual-based approach. Due to these reasons and taet@istrengths of MAS models,
we decided to use an agent-based approach for modeling Lb@@ study area.

As we have discussed, an agent-based approach is the mospagie method if
the explicit representation of human decision-making andadistic representation of the
structural complexity of the land-use system is desiredvéi@r, the major challenges of the
agent-based approach lie in the realistic representatidicalibration of the coupled human-
environment system as found in the real world. The main rekezbjective of this study is,

therefore, as follows:

To develop a realistic agent-based model for simulatingabeaplex LUCC pathway in a
semi-arid catchment in the Upper East Region of Ghana, thegenerating an operational
tool to explore the impact of policy interventions on futlaad-usgcover patterns and in-
come indicators.

The achievement of this goal indeed involves a model dewedop process that includes
sequential steps. First, a parameterized framework reptieg the structure and functions
of the coupled human-environment system underlying LUCE tbabe formulated. Next,
relevant local socio-economic and ecological processed teebe identified and empirically
parameterized using observed data. Finally, these presesed to be integrated into the
parameterized framework in order to obtain an operatior@BNMUCC model, which can be
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used to explore the potential impact of local land-use e€elgiolicies on land-ugeover and

livelihood. The interrelated sub-objectives are therefor

1. To build a parameterized MASUCC framework for modeling the evolution of the
coupled human-environment system in the study area, whdeslal-us¢cover and
socio-economic dynamics are self-organized from intevastamong farming house-
holds and land patches, under the influence of certain pslianhd other external cir-
cumstances,

2. To calibrate and verify land-use decision-making sultlet® of the farming house-
holds (i.e. human agents) in the study area,

3. To calibrate and verify sub-models representing relebmphysical dynamics of land
patches,

4. To develop an operational MASJCC model based on the parameterized framework,
by integrating the calibrated decision-making and ecalalgiynamics sub-models, in
order to explore the likely outcomes (in terms of land/oeeer and socio-economic

features) of selected policy alternatives and other eatéactors.

1.5 Outline of thesis
This thesis consists of seven chapters. This chapter givesraduction in global phenomena
and problems related to land-use and land-cover changgifide the complex nature of such
changes, and discusses the strengths and limitations reintuapproaches. A justification is
given for the application of the agent-based approach fatetiog land-us&over change in
the study area, and the related research objectives areenlitl

Chapter 2 clarifies technological concepts and methods oc§MAd establishes a
conceptual framework for detailed technical work. Firgtsic concepts of the agent-based
approach are elucidated using land-use-specific exanmiese concepts comprise the con-
cept of agents, agent environment, and agent architectiodiswing the multi-agent mind-
set, a conceptual framework for the coupled human-enviestisystem underlying LUCC is
presented, serving as a basis for detailed descriptioméend¢hapters. Third, a brief descrip-

tion of the study area is given. The chapter ends with theudson regarding the selection
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of NetLogo, a MAS computer platform (Wilenski, 1999).

Chapter 3 deals with the first specific objective. It formesathe first principles and
architecture of the MA&UCC framework, named GHana - Land- Use DynAmics Simulator
(GH-LUDAS). The chapter consists of two parts. In the firattpae four main modules of
the model as derived from the conceptual framework are ghestin detail, including the
Human, Landscape, Decision-making and Global-policy Meslu The range of land-use-
relevant variables on both the landscape and the humanssikescribed in detail, and the
structure and sub-routines of the Decision Module are ptese

Furthermore, the range of variables of the Global-policydMie, whose values are
set externally by the model user, and their integration thtocoupled human-environment
system is described. The initialization of the model is preed, i.e. the setup procedures
at the start of the simulation runs, and the simulation mwoltalescribing the sequence of
routines during model run. The architecture of GH-LUDAS &mel simulation protocol are
presented using textual, graphical and algebraic languager to any empirical calibration.
These calibrations will be conducted and justified in theseglent chapters.

Chapter 4 deals with the second specific objective, the redildm and verification
of the decision-making processes of human agents. The atedyis described with respect
to land use and socio-economic conditions in order to ma&etivsequent specifications of
the decision-making sub-models more comprehensive. Basélde findings from the area
description, the human agents (households) are catedontetypical groups according to
livelihood structure and strategy, using data condensd®uoinciple Component Analysis)
and classification (k-mean Cluster Analysis) techniquesally, land-use decision-making
sub-models are developed, being partly dependent on tvéopsty derived agent groups,
using spatial regression analysis (m-logit regressiome dodficients obtained through the
application of these statistical techniques are direettyyihto the model in order to calibrate
the final operational MASUCC model GH-LUDAS.

Chapter 5 presents the specific objective 3, i.e. the detation of land-use-
relevant landscape-specific attributes and the calibratiol verification of relevant dynamic
ecological models. The detailed description of the bioptalsetting of the study area serves
as a basis for the further model specifications. The lanereisgant landscape attributes are
then described and visualized, including local land-ceagterns, biophysical attributes and
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spatial accessibility. Furthermore, the sources and datapsing techniques for the determi-
nation of these attributes are given. Finally, the bioptsissub-models are developed, being
confined to land-use-type specific productivity functioadivestock dynamics model, and
a land-cover transformation sub-model. Both the spatititpas of the landscape attributes
and the biophysical sub-models are fed into GH-LUDAS in otdeobtain an operational
MAS/LUCC model.

In Chapter 6, GH-LUDAS as a decision support tool, and thatifleation, simula-
tion and analysis of selected scenarios are presentedd Basm: analysis of the environmen-
tal, demographic and policy setting of the study area, thereal parameters of GH-LUDAS
are specified. The setting of these parameters allows sillezs and researchers to test their
assumptions through simulation-based analysis. For fh@gmses, the use of GH-LUDAS
as an operational tool for decision support and researaesepted, including a summary of
its internal structure, and model input and output. Setestenarios are specified and ana-
lyzed. The range of external parameters allows specificaiiopolicies of dam construction
and credit access, as well as in demography and climate eh&ogeach of these families of
parameters, scenarios have been selected and compareadseliad scenario, which reflects
the policy settings as they were in 2006. Finally, the serityitof these factors to the LUCC

system is presented and analyzed.
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2 MULTI-AGENT SYSTEM ARCHITECTURE

2.1 Introduction

Multi-agent systems (MAS) are a relatively new sub-field oimputer science - they have
only been studied since about 1980, and the field has onlyedamdespread recognition
since about the mid 1990s. However, since then, internatiaterest in the field has grown
rapidly. This is partly due to the belief that agents are gorayriate software paradigm to
understand and build a wide range of artificial social systéwiooldridge, 2002). Multi-
agent-based simulation is nowadays used in a growing nuailzeas, where it is progres-
sively replacing other techniques (e.g. micro-simulataject-oriented or individual-based
simulation techniques) (Drogoul et al., 2003).

This is due, for the most part, to the fact that MAS can copé wéry diferent
models of ’individuals’, ranging from simple entities to mocomplex ones. The easiness
with which modelers can handleffirent organizational levels of representation (e.g.-indi
viduals and groups) within a unified conceptual framewor&ls® particularly appreciated,
with respect, for instance, to cellular automata (Parked.e2003). During the last decade,
the approach has been applied to more and more scientificidensaciology (Pietrula et al.,
1998; Goldspink, 2003), biology (Resnick, 1995; Drogouhlet 1995), physics (Schweitzer
and Zimmermann, 2001), chemistry (Resnick, 1995), ecolbigyperman and Glance, 1993),
and economy (Ben Said et al., 2002).

In the field of ecosystem management, access and use of Inamaraenewable
resources are key issues. Scientists working in this ared teexamine the interactions
between ecological and social dynamics. For many yeasgtiestion has been indeed ex-
amined either exclusively from the angle of 'an ecologigatem subject to anthropogenic
disturbance’, or from the angle of 'a social system subjectdtural constraints’ (Bousquet
and Le Page, 2004). With the shift to the agent-based paradige interactions between the
social and the ecological components, as well as their bgdeeity, are taken into account
(Bousquet and Le Page, 2004). These human-nature intaracts well as their heterogene-
ity play a major role in the coupled human-environment systederlying LUCC, which can
be appropriately addressed by the agent-based methodology

In this chapter, we will clarify the concepts underlying thgent-based approach
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in order to understand the further steps of model concapaiain, specification and imple-
mentation. Furthermore, we will review recent advanceompguter platforms for MAS in
order to provide a basis for the selection of a suitable pgelar our work. Finally, we will
present a conceptual MAS framework of the coupled humair@mwent system underlying
LUCC.

2.2 Multi-agent system concepts

There are many ¢lierent definitions of an agent and multi-agent systems. Hezgresent
the definition given by Ferber (Ferber, 1995 and 1999) becasseems to be the more mean-
ingful one for researchers in ecology and environmentarsms. A multi-agent system

consists of the following components:

e An environment (E), that is usually a space.
e A set of objects (O), which are situated in E.

e An assembly of agents (A), which are specific objects (a $udfs@) representing the

active entities in the system.
e An assembly of relations (R) that link objects (includingatg) to one another.

e An assembly of operations (Op) making it possible for thenégef A to perceive,

produce, transform, and manipulate objects in O.

e Operators with the task of representing the applicatiote$¢ operations and the re-
action of the world to this attempt at modification, which vireals call 'the laws of the
universe’ (e.g. productivity as a result of land managendegisions and land cover

change).

To make this definition more comprehensive, we give examfadegach of the
concepts from the perspective of the coupled human-enviem system underlying LUCC.
The environment E is simply the landscape under study whgata and other objects are

located. While agents refer to decision-making entitiesreliepresented by farmers, or more
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specifically by farming households - the non-agent objeutkide features such as houses,
markets, rivers or farm plots, which all possess a certaiation within the environment E.
The relations among objects - including agents - can be wianiRelations among among
agents might refer to social interaction with respect tallase, whereby relations among
agents and non-agent objects might, for instance, refentaré rights of an agent to a certain
piece of land. The operations of an agent including peroapproduction and transforma-
tion of objects can be interpreted in the way an agent pezsdiNs environment and takes
certain actions according to these perceptions and ownittmm&l These actions might in-
clude the choice of land use type, the decision to do irrgefarming, or the choice of land
management. Operators - or 'the laws of the universe’ - thightimclude the model of crop
productivity, being partly dependent on previous actiohthe household agent, or it might
include the natural as well as the human-induced transtoomaf land cover (e.g. natural
vegetation growth, tree logging).

2.2.1 Concept of environment

In any MAS, agents are situated in an environment, thererckeng for information, inter-

acting with each other, and possibly modifying it. The reprgation of such an environ-
ment is highly dependent on the objectives of the study. &uasd Norvig (1995) gave an
overview of the range of possible environment classes &sifsi

e Accessible vs. inaccessible
An accessible environment is one in which the agent canmbtanplete and accurate
information about the state of the environment. Modelethneald environments are
usually accessible to some degree only. The more accessildavironment is, the
simpler it is to build agents to operate in it.

e Deterministic vs. non-deterministic
A deterministic environment is one in which the outcome of aation is defined, i.e.
there is no uncertainty about the state that will result fimgrforming an action. The
physical world can be regarded as non-deterministic wispeet to particular proper-
ties.
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e Static vs. dynamic
A static environment can be assumed to remain unchangegtdxg¢he performance
of actions by the agent. A dynamic environment is one thabitiasr processes oper-
ating in it, and which hence changes in ways beyond the ageotitrol. The physical

world is a highly dynamic environment.

e Discrete vs continuous
An environment is discrete if its states are representedauatable way (i.e. a discrete
scale). For example, the landscape environment is disordesnd-usgcover types
and continuous in many biophysical properties, such aaser§lope, moisture and
biomass.

As the real environment is a highly inaccessible, non-aeit@stic, dynamic and
continuous environment, such properties should be incatpd in a model that tries to sim-
ulate real-world processes, such as land-use and land-cloaege. Thus, in GH-LUDAS, we
consider these real-world properties. For instance, thecessibility and non-determinism
of our environment is represented by a limited sphere of émide for each agent, in which
the agents have limited control over the results of theiloast Furthermore, GH-LUDAS
can be regarded as partially dynamic, as land-cover tramstion processes take place even
without agent interference. Finally, the model environimsitontinuous to some extent, as
objects and agents do exhibit dynamic state variables armha@t a continuous scale, which

results into an uncountable number of environment states.

2.2.2 Concept of agent

In MAS literature, there is no universally accepted agranadout the definition of the
term agent. However, there is a general consensus thatamyois central to the notion of
agency, being confined by the following definition given byi¥8g1999: page 32An agent

IS a computer system situated in some environment, thapsbta of autonomous action in
this environment in order to meet its design objectiv€be term autonomy here refers to
the ability of agents to act without the intervention of athgents or other systems. Such
actions of an agent are a result of the agent’s perceptiahea@nvironment, and, if designed
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as such, also of the agent’s own state (see Figure 2.1).

Furthermore, it is important to mention that this definitioihagency refers only
to 'agents’ in general, and not to 'intelligent agents’. Aading to Weiss (1999: page 32),
an intelligent agent is one that eapable of flexible autonomous action in order to meet its

design objectivesvhere flexibility means:

e reactivity: intelligent agents are able to perceive their environmamd, respond in a
timely fashion to changes that occur in order to meet thesrgieobjectives;

e pro-activeness:intelligent agents are able to exhibit goal-directed bedravy taking
the initiative in order to satisfy their design objectives;

¢ social ability: intelligent agents are capable of interacting with othexrdgin order to

satisfy their design objectives.

With respect to the coupled human-environment system af-lesgcover change,
these abilities can be interpreted in the following way: Huns can be regarded as reac-
tive agents, as they adapt to changes within their enviromnsech as climate or ecosystem
change, in order to meet and maintain their design objegtiveich might include economic
and social welfare. Second, the human seeking to maintammove the personal condi-
tion clearly behaves in a goal-directed manner, in thatsieas to be made are deliberately
chosen to meet such personal objectives. With respect tbuae, land-management deci-
sions are closely related to the personal objectives ofdhaifg household, e.g. ability to
survive, improvement of living conditions. Finally, ingations among farmers play a role
in land-use systems, with knowledge transfer and compstiteing two major character-
istics of such agent interaction. Knowledge transfer eeterthe difusion of agricultural
land-management practices or new agricultural technetoigirough the population by com-
munication and observation, which has a direct impact od-las®e patterns. Competition, on
the other hand, can be interpreted as the way in which farooenpete for natural resources,
e.g. agricultural land, pastures, forests for timber laggetc.

In GH-LUDAS, all these attributes were considered for fargnagents, which are

endowed with both reactive and goal-directed behavior.aRbgg social interaction, tech-
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Agent

sensol input action |output

Environment

Figure 2.1: Agent-Environment Interaction

nology difusion has been considered through neighli@ces, i.e. the transfer of knowledge
by neighboring farming households. Competition is notespnted directly by agent-agent
interactions, but is mediated through the use of land, teaslting in competition for land

among households.

2.2.3 Agent architecture

Following these definitions of agent and environment andctitecept of agent perceptions
resulting in actions, a function that implements such agespping from perceptions to ac-
tions is required. Such a function is called agent architectThe literature usually cites the

following five different types of architecture (Russell and Norvig, 1995):

Simple reflex agents

Model-based reflex agents

Goal-based agents

Utility-based agents

Learning agents

In the following, we will give short descriptions of each bete architectures, and

justify the selection of architecture to be implemented k-GUDAS.
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Simple reflex agents

The agent architecture of simple reflex agents consistsrgdlsi’if-then’ rules (or condition-
action rules) reacting to environment conditions peragilsg the agent, and resulting in
certain actions. Figure 2.2 gives the structure of a simgliex agent in schematic form,
showing how the condition-action rules allow the agent t&ethe connection from percept
to action. Such reflex decision-making mechanisms arel8aitar representing reactive be-
havior of both human and biophysical agents. For human agére application of reflex
decision-making assumes that people do not (or cannot)lesdcany anticipated values of
alternatives, but rather react in a timely fashion accadatheir daily routines to select di-
rectly options based on current conditions (Gi®Revilla and Gotts, 2003; Haggith, 2002).
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Figure 2.2: Reflex-based agent architecture

Model-based reflex agents

The simple reflex agent described above will work only if tlherect decision can be made
on the basis of the current perception. Such an architecaurde problematic, because the
sensors do not always provide access to the complete st#te wiorld. In such cases, the
agent may need to maintain some internal state informatiamrder to distinguish between
world states that generate the same perceptual input betmeless are significantly feker-
ent. Updating this internal state information as time goeelguires two kinds of knowledge
to be encoded in the agent architecture. First, we need sdorenation about how the world
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evolves independently of the agent. Second, we need soorenafion about how the agent’s
own actions fect the world. Figure 2.3 gives the structure of the modekbdaeflex agent,
showing how the current perception is combined with the otdrnal state to generate the

updated description of the current state.
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Figure 2.3: Model-based reflex agent architecture

Goal-based agents

Knowing about the current state of the environment is noagwenough to decide what to
do. The right decision is dependent on the goals of the agreother words, to arrive at the
desired decision, the agent needs some sort of goal infmmathich describes situations
that are desirable. The agent program can combine this witinmation about the results
of possible actions (the same information as was used totepazrnal state in the reflex
agent) in order to choose actions that achieve the goal. Soethis will be simple, when
goal satisfaction results immediately from a single agtsmmetimes, it will be more tricky,
when the agent has to consider long sequences of actionhigvathe goal. Searching and
planning are the subfields of Artificial Intelligence dewbte finding action sequences that
do achieve the agent’s goals. In Figure 2.4, the internalhai@sm of such goal-directed

behavior is depicted.
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Figure 2.4: Goal-based agent architecture

Utility-based agents
Goals alone are not really enough to generate high-quatitvatior. For example, there are
many action sequences that will make the agent achieveais lgat some are quicker, safer,
more reliable, or cheaper than others. Goals just providagedistinction between 'happy’
and 'unhappy’ states, whereas a more general performanasureeshould allow a compar-
ison of diferent world states (or sequences of states) according talyxew happy they
would make the agent if they could be achieved (see Figune Zke customary terminol-
ogy is to say that if one world state is preferred to anothemtt has higher utility for the
agent. Utility is therefore a function that maps a state @teal number, which describes
the associated degree of happiness.

A complete specification of the utility function allows mtial decisions in two
kinds of cases where goals have trouble. First, when thereanflicting goals (e.g. benefit

maximization and risk minimization) only some of which camdxhieved, the utility func-

tion specifies the appropriate tradf-0Second, when there are several goals that the agent

can aim for, none of which can be achieved with certaintjityprovides a way in which the
likelihood of success can be weighed up against the impoetahthe goals.
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Figure 2.5: Utility-based agent architecture

Learning agents

Turing (1950) noted the huge amount of work it takes to progem intelligent machine,
and concluded that it would be easier to build learning nreehiand then to teach them.
Another advantage of learning agents is their adaptalditynknown environments, and the
improvement of their behavior with time. The learning agarge a feedback, called critic, to
learn which perceptions of the environment are desirablegjmconsequence, how to behave
(Figure 2.6). This means that agents’ learning consistspfaving their future performance
based on their past critic, by optimizing their behaviortsas to maximize their utility when
the world continues evolving as it has. This kind of learmmgkes agents discover that some
kind of (but not exactly) condition-action rules always dw tsame thing, based on their
current knowledge.

A problem arises here: after some learning time, agents lex@ys going to do
the same things because of these discovered rules, thoegigémts are not sure that these
actions are optimal, while they might have a better perforceaf they had a wider knowledge
of their environment. In fact, they should try to do verffeient actions than those prescribed
by their learning process. This exploration of new actisrissured by the problem generator.

These architectures are presented in ascending order gflexity and ability to
represent real-world intelligent agents: Learning agargssurely more realistic than utility-

based agents, and utility-based agents are more reahsticgoal-directed agents, etc. Al-
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Figure 2.6: Learning agent architecture

though learning agents might be the most realistic architedor human agents, the imple-
mentation of learning mechanisms can cause a dramaticagecirecomputing speed (Russell
and Norvig, 1995). To compare the computing speed of legramd utility-based agents,
which is usually regarded as the second most realistic agehitecture, both approaches
were implemented in a simple separate agent-based modekadrhparison of both showed
that even one of the simplest machine learning algorithmadents, the k-nearest neighbor
algorithm, had a 10-fold lower computing speed than thetydlased approach. Thus, for
implementation in GH-LUDAS, the utility-based approachsveiosen in order to keep the
computing speed within a reasonable range. However, as ther debate about modeling
agents that behave in a way to achieve highest possibley\ti&. purely rational behavior),
random errors within these decisions have been includeastare bounded rational behavior.
Bounded rational behavior allows agents to choose actiatslower utilities than the opti-
mal one (see section 2.4.2). The reflex-based architecateo highly suitable for modeling
state transitions of biophysical agents (Le, 2005). As stiihmodel of land-cover transfor-
mation for biophysical agents within GH-LUDAS was desigmasd rule-based mechanism,
determining the conversions among land-cover types duirmg (see section 5.3.5).
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2.2.4 Relations, Operations and Operators

Relations among objects (including agents) in multi-aggstems can be manifold. In gen-
eral, a relation consists of a database, which can be desddoypa matrix of the length of the
total number of objects. Each matrix value is an item of adublpossible relational values.
For instance, the tuple might comprise two options (‘frigendo friend’), and each pair of
objects is then assigned the respective value. Relatiogsiotanly exist among agents (e.g.
in the form of social networks), but also among agents andagant objects, and among
non-agent objects themselves. For instance, a relatiom@mo agent A and an object O
might include the right of A to modify O, and a relation amor@nragent objects could be
their distance to each other, which might have an influncéeim internal mechanisms. Fur-
thermore, relations do not necessarily remain static andeanodified during time through
system performance.

A second important characteristic of multi-agent systeorxerns the use of op-
erations, which enable agents to perceive, produce, ttansfand manipulate objects. In
multi-agent systems, perceptions represent the knowlbdge an agent has about objects.
The knowledge base consists of a collection of data aboettsb(including agents) accessi-
ble to the agent, which can be objective or subjective. Witljective knowledge comprises
data about the real state of objects, subjective knowledgeesult from a mechansim which
distorts the perception of the real state of objects. Funtbee, the set of perceived objects,
both agent and non-agent objects, does not necessarilyrisanipe whole set of objects,
but can be confined to subsets individually for each agentadutition, the range of data
about these objects accessible to the agent can be limibedhdtance, the knowledge about
relations among the agent and other objects can be fullgtymamot accessible to the agent.

If agents are not endowed with a memory mechanism, whichies#tem to record
past data, the knowledge base of an agent is confined to tbegtems of only the current
state of objects (including himself). If an agent is endowsith such a memory mechanism,
he can record past states, actions and reactions of hinmgktfther objects. Even the knowl-
edge base of an agent can be accessible to other agents, milgichresult in situations of
'full knowledge’ (agent A knows that agent B knows that ag@rknows, etc.), which are
often studied in game theory.

Based on this individual knowledge, agents make decisiocsrding to their agent
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architecture as described in the previous section. Theerahgossible actions resulting from
these decisions comprises the deletion, the creation oificettbn of objects. The creation
of agents might be caused by a mechanism of reproductiorig e deletion of agents
might be due to dispatch. The modification of objects caruihela spatial displacement or
an alteration of the objects’ internal state.

The combined ability of object perception and the (pos$ibldsequent manip-
ulation, regulated by the decision-making architectuepresents the set of operations of
agents. Non-agent objects react to these operations viatopg which Ferber (1995, 1999)
calls 'the laws of the universe’. Such operators update gbsuin states of objects, which
can be due to agent intervention or agent-independent gsesgor both. However, such
operators are not only confined to non-agent objects. Agamtsalso be subjected to 'laws
of the universe’, for instance to processes such as ageidgaih. Changes resulting from
operators can further be perceived by other objects.

In summary, not only the internal architecture of agents$ acern in multi-agent
systems, but also the defined webs of interrelations amojagtsbincluding relations, per-
ceptions, actions and reactions. The high flexibility of thagent systems in designing these
interrelationships is one of the great benefits of this apgmopand ensures its applicability
to many research domains and areas. Multi-agent systeradeaw used to study cell com-
munities, ant colonies, animal flocking, strategic miltaroblems, etc As the modeling of
multi-agent systems relies on the specifications of agd&eisaviors and interactions, which
result in emergent properties at the level of the systemmtaggsed modeling can be consid-
ered as one of the few bottom-up modeling approaches.

2.3 Computer platforms for MAS

The use of agent-based models models (ABMs) or individagkd models (IBMs) for re-
search and management is growing rapidly in a number of fidfds example, DeAngelis
and Mooij (2005) documented a steady, sharp increase iruttider of ecology publications
using IBMs starting in about 1990. This growth is partly doehte ability of these models
to address problems that conventional models cannot, atigl frathe growing number and
guality of software platforms for agent-based modelinglg®ack et al., 2006). In this chap-
ter, we review the most widely used computer platforms famagpased modeling, based on
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a study of Railsback et al. (2006), and give a justificatiothef platform employed in our
study, which is NetLogo.

The most commonly used software platforms for agent-basedkiing comprise
the Swarm (based on Objective-C or Java language), RepaS(W, and NetLogo (based
on Java language). The first three plaforms belong to thendwaork and library’ platforms,
which were designed to make the design, implementationyaaadf ABMs more accessible
and dficient. Swarm in particular was designed as a general largaag toolbox intended
for widespread use across scientific domains. Swarm’s dpees started by laying out a
general conceptual approach to agent-based simulatiomaset Therefore, Swarm was im-
plemented as a framework - a set of standard concepts fagrdegiABMs - along with a
library of Objective-C software implementing this framewoRepast was started as a Java
implementation of Swarm but has diverged significantly frSmarm. One objective of the
Repast project was to make it easier for inexperienced uednsild models, including a
built-in simple model and interfaces, which support thecpss of model construction for
beginners. MASON is being developed as a new Java platfoesigded as a smaller and
faster alternative to Repast, with a clear focus on comjmunally demanding models with
many agents executed over many iterations. Design appeaes/e been driven largely by
the objectives of maximizing execution speed and assungptete reproducibility across
hardware.

These framework and library platforms have succeeded toge kextent because
they provide standardized software designs and tools witlmaiting the kind or complexity
of models they can implement, but they also have well-knamitations. Tobias and Hof-
man (2004) recently reviewed Java Swarm and Repast (alahgwo less-used platforms),
ranking them numerically according to well-defined criielin their study, they indicate that
important weaknesses includditiulty of use; ins#ficient tools for building models, espe-
cially tools for representing space; ifBaient tools for executing and observing simulation
experiments; and a lack of tools for documenting and comoatimg software.

The most recent development of MAS plaforms is the appearah®AS pack-
ages. Difering from the framework and library plaforms, the MAS pag&as a collection of
primitives assembled with a standardized common usefaterand provides a new environ-
ment for MAS modeling. NetLogo (Wilenski, 1999) is one amdeqyy new MAS plaforms.
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Its primary purpose was to provide a high-level platfornt tlfowed students down to the
elementary level to build and learn from simple ABMs. Howegvecent versions of NetLogo
now contain many high-end capabilities (behaviors, agst®, lgraphical interfaces, etc.) and
it is quite likely the most widely used platform for ABMs. Ol anain currently used plat-
forms, NetLogo is the highest-level platform, providingiagle yet powerful programming
language, built-in graphical interfaces, and comprelvendocumentation. It is designed
primarily for ABMs that contain mobile individuals in a grigpace with local interactions.
According to a recent evaluation of Railsback et al. (208@}tLogo is highly recommended,
even for prototyping highly complex models.

In contrast to the other platforms, NetLogo almost compjeteparates the pro-
cesses of implementing and displaying a model. The modeiegsna program (in NetLogo
language) for behavior of agents and the gridded space oroe€@ures’ page. On a sepa-
rate 'Interface’ page, the modeler can design an automatmation of agent locations on
the space. Graphs and parameter controllers can be addeglitddrface via graphical and
menu-driven tools, along with simple statements in thesgt telling the interface when to
update. In the other programming platforms, the procedsegpdementation and displaying
of the model are not separated, with the instantiation ofltsglay or 'animation window’ re-
quiring several programming steps. Furthermore, the plaes of the motions of agents on
the display have to be implemented using lower-level opmratin these platforms, whereas
in NetLogo agent motion can be simply implemented using #&-bumethod that moves
agents to a new location.

As users are highly interested in monitoring outcomes oftloelel runs, it is also
useful to compare the strengths and weaknesses of the sgi@iforms in producing graph-
ics of output indicators, output files and statistics. Hiséons are particularly useful for
ABMs, because they can output the full distribution of somm&racteristic over all the agents.
Repast and Swarm have built-in histogram classes that ate/ety easy to use, while MA-
SON does not yet provide such a class. In NetLogo, histogm<reated using drag-
and-drop and a menu on the interface page. Then, a simplestaggnent specifies when
the histogram is updated. Regarding the provision of ouifag, Objective-C Swarm and
Repast provide built-in classes to facilitate output obdata file, and data recording actions
can be scheduled just like any other action, so that they pédee at known times. Java
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Swarm and MASON do not provide file writing tools, so a Javasltor file output must
be used. NetLogo provides simple primitives for openingarting to files, although their
ability to format and control output is limited; for exampléere is no way to overwrite a
file instead of appending to it. As far as statistical caltales are concerned, Swarm has
a powerful tool for collecting summary statistics, and Negh also includes primitives that
provide all common statistics. Repast’s 'DataRecordepvjates only an average, whereas
MASON even lacks tools for any summary statistics.

The most significant weakness of NetLogo is the slow speedadeiexecution,
whereas in most of the other aspects this platform exceédechpabilities of the other plat-
forms, dfering a convenient programming environment at the same #itleough execution
speed is relevant for the choice of an appropriate softwiatfopm, it has to be considered
that the most time-consuming part is, nevertheless, thestmagprocess, and not the execu-
tion of model runs. As such, the implementation of the modelava and C programming
languages is much more time-consuming than the use of Netpomitives. Therefore, the
time spent by the model runs using NetLogo is leveled out leycbmparably short time
spent for model development. Moreover, the rapid developwihigh speed CPU mitigates
the low speed of NetLogo excution. By virtue of this argumentl the other advantages
as outlined before, we decided to use NetLogo as a softwatéoph to implement our
MAS/LUCC model in this thesis.

2.4 GH-LUDAS: A proposed conceptual framework for modelingLUCC

In this section, we will present a conceptual framework foe MASLUCC model devel-
oped in this thesis, called GH-LUDAS, in order to provide anderstanding of the further
specifications in the subsequent chapters. This framevatidfs the synthesis of the cou-
pled human-environment as proposed by Haggith et al. (2808)Freudenberger (1995).
This framework has already been used in the FLORES modelHgaggith et al., 2003),
which aims to capture the interactions between rural conitiegriving at the forest mar-
gin, thereby serving as a tool to explore the consequencakevhative policy options. It
aims to model the dynamics of the interactions between thghlyisical and socio-economic
components of rural communities at the forest margin. Thee’ghat binds the biophysical
and socio-economic components together is human deaisaing at the local level, which
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influence the performance of the biophysical componente. tDits high level of generality,
this conceptual framework can also be applied to the studgraf-us¢cover change. As
such, this type of framework has been applied to the studgrad-usgcover change in the
uplands of Vietnam (see Le, 2005), and now finds applicaiiosgveral land-use studies at
the Center for Development Research (ZEF) in Bonn.
Like the framework as proposed by Le et al. (2008), the coegframework of

GH-LUDAS comprises four modules, namely the human, thedaape, the decision, and
the Global-policy Module (see Figure 2.7). The design anerielations of these four com-

ponents are briefly described in the following.

2.4.1 Landscape module

The landscape environment (E) is usually implemented asl@gnsisting of congruent cells,
whereby each of the human agents is located on a specificgtidithin E. The non-agent
objects are usually implemented as grid values for eachngtlin E, i.e. each type of ob-
ject is represented by an own variable with values for eaeltiBp cell of E. For instance,
the object of houses might be represented by a variable owits being 1 for cells covered
by houses, and O for other cells. Relations thus exist amangah agents and cells, e.g.
ownership of a cell, whereby human agents operate on thesezlls through a set of oper-
ations Op (see section 2.2.). Operators (section 2.2) teenadthe internal mechanisms and
responses to these human actions on the landscape cellgtergal ecological processes.
The landscape environment is represented by a collectiamdécape agents, i.e. intelligent
congruent land patches (30 m x 30 m) with their own attribatesinternal sub-models of rel-
evant ecological processes (i.e. Operators). The atésbarte represented by state variables
of each patch, including the specific land-use and land+dgpe, biophysical attributes (e.qg.
topography), accessibility variables (e.g. distancever)j tenure variables (e.g. owner), and
yield variables indicating the total yield produced on teepective patch. Whereas topo-
graphical and accessibility variables are static in tirhe Mariables of land ugepver, tenure
and yield are dynamic over time and space.

Relevant ecological processes encoded within the ar¢chieeof landscape agents
comprise agricultural production, land-cover transfaiorg and livestock dynamics. The
agricultural productivity models consist of functionsaahting the yield for a single patch
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Figure 2.7: Conceptual framework of GH-LUDAS

seasonally, in response to its current state and the inmigides of the land manager (i.e.
the household agent that is cultivating the patch), theugdolating the patch variable of yield
response. The land-cover transformation model built intryelandscape agent enables it to
change its categorical variable of land cover, due to nhgroavth and changes in land use.
Within the livestock dynamics model, the total number oé$itock is determined in response
to forage productivity, which, in turn, is dependent on admainfall and land-cover patterns.

2.4.2 Human and Decision Module

The Human Module is considered in termshafusehold agents.e. heterogeneous farming
households with their own state and decision-making mashemnabout land uses (i.e. the
Operations Op). The state variables of the household iectutHousehold Profile and a
spatial perception radius within the landscape, calleddsaape Vision. The Landscape
Vision consists of a collection of landscape agents locatednd the compound house of the
household agent, on which the agent has full informationcamdset actions. The Household

Profile comprises a list of household variables, such as lagesehold size, income, land
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resources, and the household’s access to certain poliGeserally, the variables of the
Household Profile as well as the policy-related variableange over time, but in response
to different factors. Whereas some variables undergo a natunagel{e.g. age), others are
updated in response to agricultural activities (e.g. inepniolicy-related variables change
according to the values of the policy parameters, which erréysthe model user.

The decision-making mechanisms are represented by a sepawdule, integrated
in the architecture of the human agent. The mechanismshvwdrie based on the concept
of the utility-based agent architecture, works by takinguits from the household profile,
policy-related variables, and the state variables of thhegpeed landscape patches. The de-
cisions modeled by the decision-making mechanisms maspisesent choices among a dis-
crete set of options (e.g. the choice among several landypss for a given patch), using a
utility function to assess the benefit of each option. Ukititfor each choice are calculated
using multinomial logistic (m-logit) regression, whichrnche formally expressed as:

elp"'ZiﬁipVi

Utility , = _Zq a2 BiaV]

(2.1)
whereUltility , is the utility of optionp, having a value between 0 anddl, a constant, and
Bp the so-called preference dieient of optionp. When designing purely rational agents,
the option with highest utility would be chosen by the agermiswever, as purely rational
behavior is rightly regarded as unrealistic, the choice ewdre designed to also consider
options with a lower utility, thus allowing bounded ratidityaof household agents. This way,
within GH-LUDAS, the utilities are interpreted as probaiels between 0 and 1, such that
optionp is only selected with a probability dftility .

The Decision Module is universal for all household agemtgerms of its logical
sequence. However, as the agent’s state and the prefereatiieients of the utility functions
are individual-specific, decision outcomes result in a lyighverse pattern, thus representing

heterogeneity among land users with respect to land-ussicies.
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2.4.3 Human-environment linkages and interactions

Human-environment linkages are mainly characterized hyreerelations and a percep-tion-
response loop (Figure 2.7). Tenure relations between holagents and landscape agents
consist of rules determining the household access to lasmlrees (e.g. ownership and
use rights over land). Ownership is a tenure relation ag@iecifically to an individual
household, i.e. the holder of the land. Village territorgienure relation applied specifically
to a group of household agents, i.e. those households taed gie same village.

The perception-response loop involves the flows of inforome&and matter among
the human and the environmental modules. Perception pames to the perceived spatial
status of the Landscape Vision of a specific household, wikitdd into the decision model,
together with household-specific data, to calculate thicipated benefits of certain land-
use actions. Based on these calculations, the househaitr@gponds by setting actions on
his perceived environment, represented by decisions dflee type and agricultural inputs.
Subsequently, the state variables of the considered matreeupdated, either directly (e.g.
land-use type), or indirectly through the application abghiysical sub-models (e.g. yield
response, land-cover transition). Finally, these updstat variables are fed again into the
household’s perception, thus forming an annual loop ofgq@ions and actions.

2.4.4 Global-policy Module

The Global-policy Module represents relevant factors trat set externally by the model
users, and are thus not a result of the internal mechanisrtteeahodel. These external
parameters consist of parameters describing the rairdgihre (e.g. annual precipitation),
the population dynamics of the household agents (e.gyiogrcapacity, growth rate), and
parameters of some relevant policies (i.e. household adecesredit and construction of
new dams). These factors directly modify either landsaafeted variables and household-
related variables, or alter the interaction modes betweesdhold and the environment (see
Figure 2.7). For example, parameters regulating the adoeseedit directly updates the
policy-related variables of the household, whereas danstoaction dfects state variables
of the landscape through changing the biophysical variabland cover and irrigability.
Through the perception-response loop, such changes ef\stefibles on either the human
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or the environmental side are carried through the modek #ignificantly modifying the
functioning of the whole system.

This proposed agent-based architecture allows integrafidiverse human-, environ-
ment- and policy-related factors into farmers’ decisiorkmg with respect to land use and
presentation of subsequent accumulated outcomes in tdrspatal and temporal patterns
of the natural landscape and population. Furthermore,céseé the dynamics and struc-
tural complexity exhibited by land-use systems are reftebtethis framework, including the
representation of heterogeneous landscape and housgeoitsaspatial and temporal inter-
actions among these agents, and the consideration of felettimgps such as the perception-
response loop. The representation of nested hierarckigelsland scale-dependent processes
was also considered on both the landscape and the humarsid&o the complexity of the
integration of hierarchies within the model, this aspecs$ wat presented in this section, but
will be outlined in the main chapter of model description épter 3).

2.5 Materials and methods

The framework described above is a general framework foraiogl LUCC, independent of
the specific conditions of the study area. However, furtipecsications of the model will
highly depend on the local conditions and processes in tidy strea. Thus, within the fol-
lowing sections, we will give a short description of the stwidea, justify its selection, and
present the sources and generation methods for the dateeefpr model implementation.

2.5.1 Selection of the study area

The study area comprises the Ghanaian part of the Atankwaidhment in the Upper East
Region of Ghana; the Atankwidi is a tributary of the White tedlocated between Navrongo
and Bolgatanga, with its upper reach in Burkina Faso (Figu@&. The catchment lies at
10°31'30”N latitude, and 666'0”E longitude, covering an area of 2K?, whereby the
Ghanaian part covers an area of k5§ .

The catchment comprises the villages of Kandiga, Siriguy&uZoko and parts
of Sumbrungu and Mirigu. This area was inhabited by 41.09dpfeein 2000 (Ghanaian
Population Census, 2000). Out of these, 47 % were malesnggabout 53 % females.
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This difference in male and female numbers is mainly due to a highematiog rate among
the male population, confirming the hypothesis that migreis part of the survival strategy
among males in terms of income generation. The major aesvif the local people are
confined to agriculture, livestock rearing, and non-farrivéiees such as trading or handi-
crafts. As most of these livelihood activities in the arealsighly dependent on the services
of land and water resources, any changes in the land predyetnd pattern of land use and
land cover are thus highly interrelated with the living ciimhs and well-being of the local
population.

Apart from human influence, local land use and land cover msicierably depen-
dent on climatic conditions. The study area falls within 8welan-Savannah climate zone,
which is characterized by a distinct rainy season lastim@g@pmately from May to Septem-
ber, and a dry season from October to April (Martin, 2005nd-aise and land-cover patterns
differ widely between the two seasons, with most of the agrirllactivities confined to the
rainy season. Within this season, the major part of the lani@dee is covered by small-farm
agriculture, with patches of grassland that are mainly wesedrazing plots for local live-
stock. Only 8.3 % of the land surface can be categorized a&slbad in this season, being
inappropriate for agricultural use. Due to the extensiveafdand for agricultural purposes,
the forest area has shrinked to only 3.1 % of the land surfmoee,mostly consists of 'sa-
cred groves’ along the river, i.e. holy forest patches tradally protected, and forested hills
with steep slopes. In the dry season, cultivation is onlysfide with irrigation, mostly be-
ing confined to small areas along the riverside, where grvatet tables are relatively high.
The main irrigation technologies comprise bucket irrigatand pump irrigation either using
hand-dug wells or large dugouts to reach the groundwatés.tdbue to the harsh climatic
conditions in this season, bare soils are prevalent in timairgng area.

This study area was chosen for the following reasons. REhstarea is located in
one of the poorest regions of Ghana, which implies that alsldievaluation of the impact of
policy interventions on local socio-economic and ecolabgonditions can be of importance
to ensure a sustainable improvement of local living condg&i Second, the local land-use
patterns and socio-economic conditions are represeafatiwther similar areas in the Upper
East Region, which makes the results transferable to otbasdo some extent. Third, other
studies covering the hydrological settings and dynamie® teeen conducted in the study
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area, which could provide interesting results when usedmkgnation with the results in

this study. The findings of hydrology and groundwater abglity can be compared to the
actual agricultural water consumption. Finally, as dathtibedbe collected during several field
surveys, a good research infrastructure gave the final turselecting this area.

We defined the extent of the study area using both naturalrestiiutional bound-
aries. In the north, the study area is restricted by the bacdBurkina Faso, while the south
part is confined by the drainage area, major roads, and gibbagders, which coincide almost
completely. It was important to delineate the study areagiollage borders to ensure that
local farmers do not, or very rarely, use land outside thdystuiea. But since an exact map of
such village borders was not available, finally the drairerge for the catchment was chosen
to represent the spatial extent of the study area.

2.5.2 Biophysical characteristics and data generation

Biophysical characteristics (e.g. climatic, soil, andevatlated factors) of the environment
are usually important drivers of land-ysever change. In order to integrate biophysical
drivers in GH-LUDAS, relevant biophysical drivers needede identified, described, and
mapped for further use in GH-LUDAS. In the following, a degtion of biophysical condi-
tions in the study area is given, followed by a presentatfalata sources and data processing
methodologies.

Climate

The study area falls within the Sudan-Savannah climate,z@hieh is characterized by high
temperatures and a mono-modal rainfall distribution witisginct rainy season lasting ap-
proximately from May to September, and a dry season lastorg Dctober to April (Martin,
2005). In the rainy season, south-west monsoon winds axalpreé, coming from the At-
lantic Ocean, thus being responsible for humid and wet ¢mmdi during the rainy season
period. These winds reach their maximum northern extentigust (Yaro, 2000). In the dry
period, north-east trade winds blowing from the Saharartiesalled the 'Harmattan’ - result
in warm, dusty and dry conditions, and reach their maximuatlsesards extent in January.
The long-term mean annual rainfall in Navrongo is 990 mm &uated from monthly rain-
fall data for the years 1961-2001 (Martin, 2005). Regardiggculture, the single rainfall

46



Multi-agent system architecture

4P°W 2°W V00 g 2°E

14N - t

Po

12N =

10°N

&N Lok / | Boigalanga
|
Legend ] ¢ y
Volta River Basin ~ . - \ Legend
~ International border ! —— International border
Atankwidi catchment A Atankwidi catchment

Figure 2.8: Location of the study area

regime received in this area limits full utilization of thaysical capability of the people, as
most of them are employed only during the short wet seasomaechployed for the rest of
the year (Yaro, 2000).

Temperatures are considerably higher than in the rest otdbetry, with mean
monthly temperatures ranging betweeri 88and 38 C. Temperatures are high throughout
the year, with the lowest daytime temperatures coinciditityy ¥he peak of the rainy sea-
son, while the lowest night-time temperatures occur in Ddme and January, caused by the
Harmattan wind. The Harmattan period records the higheshdi range of temperature, as
nights are cool while days are very hot as a result of the afesehclouds. Vapor pressure
during this period falls considerably to less than 13 000, t#a relative humidity rarely
exceeds 20 % during the day but may rise to 60 % at nights (Rbp@epartment of Geog-
raphy and Resource Development, 1992).

47



Multi-agent system architecture

45 , 300
Mean monthly rainfall
— Mean daily maximum temperature (°C)

40 |- — Mean daily minimum temperature (°C) _ = __________________ 250
~ 35 200
& .
= =
£
& 30 150 =
225 100

20 50

15 T T T T T T T T T T 0

Jan Feb March April May June July Aug Sept Oct Nov Dec

Figure 2.9: Annual temperature and rainfall pattern in tielgarea

Soils

According to soil maps of the Ghanaian Soil Research Irtstitn Kumasi, there are six
soil associations prevalent in the study area: The asswmtsabf Tanchera, Kolingu, Nan-
godi, Kupela-Berenyasi, Bianya, and Tongo, and the Siaxgale Complex along the river
banks (Figure 2.10). Following the FAO soll classificatigstem, these associations can
be grouped into three soil types, namely Lixisols (Tanchiéacdingu, Nangodi and Bianya),
Leptosols (Tongo and Kupela-Berenyasi), and LuvisolsréSizagare Complex), which de-
veloped over granites, sandstones and Precambrian baseroks, respectively (Martin,
2005).

The soils over granites and sandstones have mainly ligebitgovarying in texture
from coarse sands to loams, and heavier subsoils varyimg ¢aarse sandy loams to clays
with a variable amount of gravel. Soils developed over besi&s and most of those in the
valley bottoms have heavier topsoils and subsoils (Adu9L9&-or about five months of
the year, the soils receive a total rainfall of about 1000 st for the remaining seven
months they dry out almost completely. This alternation et and dry conditions causes

intense leaching of nutrients out of the topsoils and pr@sdhe irreversible hardening of
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Figure 2.10: Soil associations in the study area

the subsoils, which leads to the development of iron pans.

Vegetation

The study area is a typical savannah parkland, which is angavelandscape highly modi-
fied by agricultural use and settlements, thus being anretenthropogenic landscape. The
natural tree flora has been severely depleted, apart frori ®nest patches, mostly con-
sisting of 'sacred groves’ along the river banks. Almostrgvusatural tree species, except
those with economic or social value, has been systematiethinated from the farming
areas. Such economic tree species incMdellaria paradoxa(55.5%),Diospyros mespili-
formis (15.5%),Acacia albida(9.5%),Bombax costatur(R.5%), Parkia biglobosa(2.0%),
andMangifera indica(2.0%). According to field interviews, these tree speciesumually
not cut down during land preparation, which is why they beeamore common over time,
giving the impression of planted trees.

Groundwater

Groundwater levels in the study area vary between 1 to 29 owbgtound (Martin, 2005),
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whereby high water tables during the dry season allow iteig&ultivation, mainly by using
hand dug wells and dugouts. Except for irrigation, grourtéwes withdrawn by boreholes
for domestic purposes, such as drinking, cooking, wasHurgwatering livestock and for
building and repair of loam compounds. Use of groundwateirfmation is currently min-
imal (Martin 2005). Based on estimations by Martin (2006)at groundwater abstraction
in the study area amounts to 167,000/y (28 %) through hand dug welttugouts, and
427,000m*/y (72 %) through boreholes. This equals a total groundwatstradtion of 3.6
mmyy. A long term average groundwater recharge of 60/yncompares to the total current
groundwater abstraction of 3.6 niyrin the study area (Martin 2005). Groundwater recharge
is therefore currently not a limiting factor for groundwatesources development. However,
spatial variations of groundwater table and recharge plgcisive role for irrigation-related
land-use choices, e.g. the search for suitable land fgaition.

Data sources
In GH-LUDAS, climate was considered in terms of its tempdmati not its spatial variability,
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as the study area can be assumed to be uniform in terms oftidiomanditions, due to the
area’s relatively small size. Instead, we considered kengr changes in annual precipitation,
as this climatic factor plays a major role for local agricu#t. These long-term rainfall data,
I.e. the annual decrease in precipitation in fpyraveraged for the next 30 years, were derived
from the IPCC data distribution center (www.ipcc-data)org he values were calculated
based on monthly means of daily precipitation (fdjrwithin the period 1960 - 2100 as
computed by the CSIRO-Mk2 model for each of the four IPCC SRESharios. CSIRO-
MK2 is a global grid-based model, with a spatial resolutib62b km by 350 km. Based on
the computed annual rainfall reduction for the pixel thedgtarea is part of, annual rainfall
for the next 30 years was calculated and included in the klons of biomass and crop
productivity in GH-LUDAS.

A soil map of the six soil associations in the study area was/el@ from Adu
(1969), which was scanned and digitized. Using this map,ldestility and a soil texture
map were generated by assigning a specific fertility andutextalue to each of the soll
associations, respectively. The fertility class, randgnogn 'Very Good’ to 'Very Poor’, and
the topsoil textural class of each soil association wasaete¢d from Adu (1969), the latter
of which was ranked based on the USDA textural classificatidmich identifies 12 major
soil classes, and 9 further classes for loam and clay (seerBrd003). According to this
rank, each textural class was assigned a value between ¢éqaese sand) and 21 (i.e. clay).
Accordingly, each fertility class was assigned a value ketwl and 5, representing the
five fertility classes ranging from 'Very Good’ (5), over '@d’ (4), 'Moderately Good’ (3),
'Poor’ (2) to "Very Poor’ (1).

A land-cover map was generated based on a ground-truth eatand two satel-
lite images of the study area, including a Quickbird imagé&gialGlobe 2007), and an
ASTER image (USGS and Japan ASTER Program, 2007), whichai#rbe acquired from
the GLOWA-\olta Project Geo-database at the Center for eveent Research (ZEF) in
Bonn (www.glowa-volta.deesults_geoportal.html). To interpret these scenes imdesf
land cover, a ground-truth survey was conducted in the stmelg in August 2006. Within
the course of this survey, over 1100 GPS points were takerassidned one of the main
land-cover classes 'grassland’, ‘cropland’, 'forest’arb land’ , and 'water’. The range of
these classes had been identified within a 3-days preligjlaad-cover survey. The ground-
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truth survey itself was carried out in daily field visits, waby the starting point of the GPS

measurement was selected on the map prior to each visit tmeeasiniform coverage of the

study area by GPS points. From each starting point, measmtsmvere taken every 100 m

along all four bearings up to a distance of 3 km to the stappioigt. Based on this ground-

truth data set and the satellite images, supervised clzesnin was applied to generate a local
land-cover map (for details see section 5.3.1).

Spatial data on groundwater recharge and groundwatend@relderived from time
series simulations of a version of the WaSiM-ETH water bedamodel for the Atankwidi
catchment by Martin (2005). For the year 2004, simulatedigdavater recharge (in mimonth)
for each month and groundwater table (in m below ground) &mheday were used. These
data, which were produced by WaSim in binary code with a teggmi of 100 m x 100 m, were
converted to GIS raster layers with the same resolutiomdJie map calculator in ArcView
GIS 3.2, average monthly groundwater recharge (momth) and average groundwater table
(m below ground) were calculated and mapped for both seasons

Topographic features of the study area were derived frongitatielevation model
by Le (2006) for the Atankwidi catchment, which had been devated from USGS SRTM
Elevation data (at the resolution of 92.53 m) to resolutioh$5 m and 30 m. The DEM is
available at the GLOWA-Volta Project Geo-database at theé€ldor Development Research
(www.glowa-volta.dgresults_geoportal.html. Maps of topographic featureifestudy area
were calculated from the DEM using the surface procedureaview, comprising elevation,
upslope contributing area, slope degree, and wetness.ifidthexdefinition and relevance for
land-usg¢cover change of each of these factors is given in sectiod.5.2.

2.5.3 Population characteristics and data generation

The small river basin of the Atankwidi is inhabited by a mginiral population that in their
majority belongs to the Kassena and Nankana ethnic groupsthfee main religious groups
in the study area comprise the Christian, the Islamic antr#uitional religions. Traditional
religion is the most common form of worship in the region é4%), followed by Christianity
(28.3 %) and Islam (22.6 %). To date, the chieftaincy insttuhas matured throughout the
region, and each village is headed by a chief normally notathtom among a royal family.
The chieftaincy system is characterized by a strong hibreatstructure, i.e. political power
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is exercised through hierarchical levels of authoritynfrthe chief over section and clan
heads down to sub-clan heads.

At the lowest level, authority is exercised by the compouedd; who is the person
in charge of a sub-unit of the clan living together in a compibuln the study area, these
compounds are not clustered together, but are rather eseatiered all over the catchment.
The compounds usually give shelter to several househalds/érage 3.1 households) of the
same family. With a total population of about 41000 peopte2000) and an average of
7.2 persons per household, about 5700 households live@isttitly area in 2000. The age
structure in the study area is characterized by a largeguo(ébout 48 %) of children (i.e.
persons under 18). This large fraction results in a very l@amage of the population (about
24 years), while the mean age of the household head liesrragdé years. Education levels
seem to have increased strongly during the last decade$, #sd persons under 18 have
attended at least primary school, while 75 % of the househedds, who mostly belong to
the next higher generation, have never been formally eddcat

In average, each household owns 2.4 ha of land, which amtw6t84 hgperson.
Of this area, 68 % is cultivated during the rainy season images while the remaining area
Is left bare as grazing land. The average total gross incoome fainfed cultivation amounts
to 930 US $, while further 260 US $ are generated by non-faiimies during this season.
In the dry season, average total gross income amounts to S1%) While in this season, the
variation in income is much higher than in the rainy seasdms i& due to the fact that a part
of the households (38 %) is engaged in irrigation, which isghlly profitable activity. In
average, about 758 are cultivated by these households through irrigation.

Most of this information was derived from the data set getegrduring this study.
To obtain these data needed for the implementation andmes$i@H-LUDAS, two socio-
economic surveys were conducted in the study area. In tt@wiolg, the identification of
the relevant survey unit, the sampling strategy and theesutesign and realization are pre-
sented.

Identification of survey unit

As family relations are highly intervowen in the study artree family unit for the survey
had to be appropriately defined. For our study, the relexantly unit should represent the
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decision-making entity regarding land use and other d&#i Although the compound head,
who is the head of the whole compound family, is in charge efdhtire land, it made more
sense to consider the single household as the relevantaurilid socio-economic surveys,
since field investigations had shown that the compound laasdusually divided among these
households and the decisions about land use were mostlgendent, apart from social in-
fluence. However, due to interwoven family relations amdregihhabitants of a compound
and a complex land-tenure system, it wafidilt to define the term of household appro-
priately. The Ghanaian Survey Department usually definesuséhold as 'the number of
people eating from the same pot within a compound’. But tleisnition was problematic
for our study, since family members, each in in charge of cawd) were found to still 'eat
from the same pot’. Therefore, we defined a household as afilpavho are dependent on
the person who decides about and manages a piece of land, waovill call the household
head. Dependent people are then those who are fed by thefgaidhe household head'’s
land, and who do not manage own land. Thus, a household iseddfyall persons who 'eat
from the sameplot’. This definition of household was then used for identifyimgusehold
members, their activities and their contribution to howtelncome during the interviews,
which were conducted with the respective household headlcases. Given the homogene-
ity in livelihood conditions (i.e. housing, food availalbyl etc.) of the population, the sample
size was set to 200 households, which had to be chosen fiftenetit compounds in order to
meet about 5 % of the compounds in the study area.

Sampling strategy

Since the later data analysis would be based on statistethlods, it was necessary to choose
a random sampling strategy. However, not the full set ofet#80 households was chosen in
a random way, as a part of this sample was specifically dextidatthe assessment of policy
impacts. Within GH-LUDAS, these policies include the staés of dam construction and
credit access, which were identified to be the most relevalitypinterventions with respect
to land use (see Chapter 6). But since functioning dams weserd in the study area, and
access to credit minimal, parts of the sample were not chmstomly, but related to the
access to these policies. This way, the sample was splitléohouseholds to be selected
in a random way, 30 households that had once obtained ceedit30 households from the
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neighboring Anayere Catchment, where there were opegdtiams.

To identify the 140 households randomly, a spatial sampieghod was chosen,
as lists of names of household heads in the study area weeaitdble. In order to make
sure that the composition of the sample would reflect theatieomposition of the popu-
lation in the study area, a stratification method for the darhpd to be applied. For this,
the study area was divided into 8 units, demarcated by mapuals and the main river to
serve as landmarks for the sampling, to be directly carrigdrothe field. For each of these
units, the single compounds were digitized using a higbl®n Quickbird image, which
made the compounds easily identifiable. According to thelramaf compounds in each unit,
the percentage of households selected was calculateddbrugst. By using this strategy,
an equalized representation of the population was ensaret],based on this stratification
method, random households could be identified in the fielguifé 2.12).

Survey design and realization

As the climatic conditions causeftrences in land-use behavior and livelihood strategies
between the dry and the rainy season, two socio-economieygiwere conducted, one for
each season. The dry-season-related survey was condacietlyi2006, while the rainy-
season-related survey was conducted after the final harviede November 2006. In both
surveys, the same set of selected households (200 housgWalslinterviewed, and the same
guestionnaires were used for all households. The maintsaagiehe two surveys were the
generation of a household-based data set and a plot-batsedaedaThe purpose of the gen-
eration of a household-based data set was to charactenzehold agents in terms of their
household state (e.g. household assets, livestock, ettthair decision-making sub-models,
while the plot-based data set was used to characterizedpbysical state (e.g. land use) and

the biophysical sub-models (e.g. agricultural produttjof landscape agents.

Dry-season survey

The main goal of this survey was to develop i) the basis of thelpased data set for each
household, i.e. to record land-use type, location and dizach cultivated plot (in either

season 2006), ii) to collect data on management, agri@lityout (i.e. labor, chemicals) and
yield for each plot cultivated in the dry season 2@I®6, and iii) to record engagement in
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» Random Household
Section Border

Figure 2.12: Locations of 140 randomly selected househipltge Atankwidi catchment

and labor allocation to each of the income-generating mom-fctivities. Since information
from farmers about their plot sizes turned out to be unrédighe single plots were measured
by GPS, i.e. waypoints were taken by walking around the ot its size finally calcu-
lated using the XTools extension of ArcView GIS 3.2. In tpi&l4 plots were measured,
accounting to about 4 plots per farmer in average.

Both the relevance to land-use change and the applicabilithe questionnaire
were examined before finalizing the questionnaire. Thevaslee of information was as-
sessed with help of LUCC modeling expert Dr. Quang Bao Le {&@efor Development
Research), followed by the necessary modfications of theeotsof the questionnaire. The
way of data acquisition and the form of questions was impitaueder assistance of social
scientists, local experts, and field experiments. The sutself was carried out by four enu-
merators, who had been educated and trained in field exeiicitbe proper application of
the questionnaire and the use of GPS units for plot measuteme

To ensure a stratified distribution of the random 140 ineages within the catch-
ment, the households were contacted and selected accdodingpecific random sampling
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procedure one day before the interview. According to the memof households to be in-
terviewed in each unit (see above), interviewees were tsel@gandomly within each unit in
the field. Using the demarcations of the unit for field oriéinta households were selected
systematically every 1.2 km along certain bearings by u8R& on a motorbike. Compro-
mises had to be made due to unpassable rivers and rocky acatsa due to the necessity
to avoid large distances between the households, as theeeators were only equipped with
bicycles. The remaining 60 households, which comprisedéloolds with access to credit
and reservoir cultivation, were organized by contact pegsdlere, a random approach was
impossible, due to the low number of eligible candidates #@uadfact that information on
credit and those who obtained some was strictly confidentak these persons had to be

organized by a confidant.

Rainy-season survey

While the focus of the dry-season survey was mainly on dasse activities and plot mea-
surements, the contents of this second survey had a brozajee and were more extensive
than that of the previous one. The decision to shift the nraarview part to the second ques-
tionnaire was based on the fact that farmers in the studyweeeausually less occupied after
the end of the rainy season, which ensured a more relaxadigteatmosphere and thus a
higher reliability of information. The range of questionglnis questionnaire covered i) plot-
based data for the last rainy season (e.g. managementir@oibrcrop yield), ii) income data
(e.g. from non-farm activities), iii) livelihood data (e.demographic structure of household,
household assets), and iv) policy access (e.g. extensivicsecredit access). The kind and
range of questions within these blocks were selected aicuptd the experiences during an
informal interview campaign conducted before the survey.

In order to ensure an accurate recording of the plot-badedniation, a reliable
method for the identification of the single plots during th&erviews had to be developed.
Detailed digital maps of the plots of each household had Ipeepared prior to the survey,
which facilitated the communication between the intengeand the interviewee regarding
the plot identification. These maps were developed on this bhshe GPS measurements
of the first survey, using ArcView GIS 3.2. In order to incredke identifiability of the
plots other objects like streams and roads were also mappedng as additional reference
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features. Finally, the mapped plots were labeled witfedent colors, each color represent-
ing a specific land-use type, which further eased the ddgmmipf certain plots during the
interviews.

The six enumerators who conducted the survey were traingsktthese maps prop-
erly, i.e. to identify the bearings of the various plot laoas and to indicate them to their
interview partners. The training also comprised exercisggslot description in terms of
size, land use or distance to river or roads to enhance pgédbcommunication, including
training in the use of the questionnaire in the field as welhasupervised 'dry runs’. The
interviewees were localized with help of a GPS unit and adethone day in advance to
make appointments for the next day’s interviews.
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3 SPECIFICATION OF GH-LUDAS

3.1 Introduction

One weakness of MAS is that it is not possible to establish gn@emaatical proof of the ob-
tained results (Bousquet and Le Page, 2004; Axtell, 2006yvever, the model’s credibility
can be enhanced through several strategies. The firstggtiatt assess the relevance of the
hypotheses of the model. As such, assumptions underlyewgntidel should be clearly stated
and justified. We will follow this strategy throughout the dab specifications (Chapters 3
to 5). In addition, we present descriptions of the condgiand practices as observed in the
study area, thereby enhancing the credibility of the modslimptions.

The second strategy is to provide a rigorous presentatigdheoftructure of the
model (Le et al., 2008; Bousquet and Le Page, 2004) to praidensparent model descrip-
tion, such that the internal mechanisms can be easily estrakhis way, the specifications of
the model focus on two aspects: i) system architecture asgstem implementation (Cliid-
Revilla and Gotts, 2003). Accordingly, we will present alfjybarameterized architecture
of GH-LUDAS based on the conceptual model described in @Gndhtand will outline the
simulation protocol for this architecture, including thetialization of the model and the
time-loop procedure run during simulation. We will elalter¢he system architecture and

model implementation as follows:

The Human Module represents the system of human population in which farming
households are treated as human agents, endowed with sgpmific variables, pa-

rameters and connected to a model of land-use decisionagnéRecision Module).

e ThelLandscape Modulerepresents the system of the landscape environment in which
congruent land patches are considered as environmentaisagagdowed with own
parameters and biophysical sub-models.

e The Decision Moduleis a decision-making routine integrated into the human fgen
simulating household-specific land-use behavior.

e TheGlobal-policy Module is an external module in which model users can set the val-
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ues for selected policy and demographic factors under IH@@tE scenarios, thereby
exploring alternative pathways for land-ys&ver and related socio-economic condi-
tions.

e Thesimulation protocol of GH-LUDAS which delineates the sequence of sub-procedures
during simulation runs.

3.2 System of human population: the Human Module

The Human Module represents the human part of the couplegimemvironment system
underlying land-use and land-cover change. The dynamidsi®fmodule emerge from the
local interactions between household agents and their aiateenvironment. Since these
dynamics are scale dependent, witfetient processes acting affdrent levels, the human
system is designed as a hierarchy of three interrelatetslef/erganization: household agent,
groups of household agents, and the whole population (sped=8.1). The process of land-
use and land-cover change at the highest level of the whgbelaton is then the result
of the interactions at lower levels, which represent rdalthdividual (and group) land-use
behavior.

The household agent represents individual farming hodudemathin the study area
(section 2.5.3). The structure of an individual househglelrd comprise four components: i)
a data set of household variables (called Household Profideich play a role in the land-
use decision-making processes and other model routinesriile set defining the changes
within this set of these household variables (called IrgERules) iii) the agent’s Landscape
Vision, a subset of the whole landscape in which the agentacaron and interact with
other agents, and iv) the Decision Module, a complex of ptooes mimicking decisions
a farming household has to make, e.g. land-use choice ordtision to get involved in
irrigation farming. These decisions are dependent on beghHousehold Profile, the policy
parameters as well as on the state of the agent’s Landscajpa Vi

Groups of household agents are collections of householisgdth a similar liveli-
hood typology, thus being assumed to have a similar landsekavior. This group-wise
land-use behavior is represented by group behavior paeaspethich have been derived by
empirical group data. According to the group an agent beddogthe group behavior pa-
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Figure 3.1: Integration of the Human Module in GH-LUDAS

rameters are fed into the agent’s Decision Module. Moredwausehold agents can change
their agent group, and thus their land-use behavior. At titeaf each model step, which
is represented by one year, a household agent is allocatbé group that has the highest
similarity with the agent. If an agent changes his agent grdwe will also adopt the new
behavior parameters, which will in turiifact his decision structures. Thus, the agent groups
play a crucial role in this model of land-ysever change, as they represent the change in
land-use preferences among household agents during time.

The population is the collection of all agents, and its patie the emerging result
of the processes at the lower levels of the hierarchicaksystStatistic procedures are cal-
culated to analyze the characteristics of the populatioindudime, such as mean total gross

income and the Gini Index of income distribution.
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3.2.1 Structure of the household agent

As already outlined above, the structure of the househadtag as follows:

Household Agent (Household Profile, Internal Rules, Landscape Vision, Bieai
Module)

In the following, we will describe all of these four compot®in detail, and introduce the

range of variables used within the model of the householdtage

Household Profile

The Household Profile (§ofile) includes seven sub-types of variables: social identiy an
livestock (Hoclive, human resources ggdman, land resources (EhLg), financial resources
(Hincoma, environmental variables @), irrigation variables (k,), and policy-related at-

tributes (Hholicy):
|"profile: {H soclive Hhuman Hiand Hincome Henw Hirrs |"policy}

The social identity and livestock factor {ktjiye includes age of the household heag b,
village code (Hijlage), the number of wives of the household heag,{idg), the number of
cattle belonging to the household {49, the livestock index (kestock, @and the group
membership (lgroup:

Hsoclive= {H age I"villagea Hwives Heattle Hiivestock ngoup}

The agent’s human resourcesy(jfan consist of household size {Ho, labor availability
(Hiabop, the dependency ratio gdpend, and Hyool dry @nd Hyool rainy Which are the labor
pool in the dry respectively in the rainy season (in laborsjayrhe dependency ratio is the
ratio of labor availability and household size, representhe composition of workers and
non-workers in the household:

Hhuman= {H size Hiabor Hdepend I"pool drys I"pool rain)}

Household land resourcesgiy comprise six variables including total area owned by the
household (HHoidingd, total area owned per capitagbldings per cap Cultivated area in the dry
season (it dry), cultivated area in the rainy season(ffrainy, and land-use composition

vectors for each of the two seasons¢fliyry], i = (1 ... N)) and ([Hy i rainyls i = (1 ... M)):
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Figure 3.2: Household Profile

Hiana={H holdings Hholdings per capchIt dry: Heuit rainys [Hop i dry]’ [Hop i rainy]}

where i indexes the dry-season respectively the rainyepdasd-use types.

The factor of financial resources of the householg,{kihe comprises total gross income
per capita (Hross per cap 9ross and cash income in the dry seasofidtd ary and (Hash dry
respectively, gross and cash income in the rainy seasgpddtainy and (Hash rainy re-
spectively, as well as an income composition vector of inedrmm rainy-season cultivation

([Hoyl, J = (1 ... M)), with j indexing the rainy-season land-use types:
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Hincome={H gross per capngoss dry Hcash dry ngoss rainy Hcash rainy [H %j]}

The environmental variables gH) include distances from the compound of the household
to main river (Hjist rivep, t0 dams (Hist gams, and to water sources in generalfi wate).
which represents the distance to irrigable areas and iglesdd as the minimum of §k river

and Hyist dams

|'|env: {H dist riven Hdist dams I'ldist Wate}

The state of a household agent regarding irrigatiof thcludes five variables: i) a dummy
variable variable (gry qummy indicating if the farmer is inherently capable of doingda-
tion, ii) a second variable reporting the kind of irrigatitethnology (ki method for those
households with (lgy qummy= 1), ranging from bucket irrigation, pump irrigation to dam
irrigation, iii) a variable indicating the percentage ofusehold heads practicing irrigation
among the five nearest households, iv) a variable represgiite number of years the farmer
has practiced irrigation (fars i), and v) a dummy variable ()4mp indicating whether the
household owns a motor pump.

Hirr = {H dry dummy Hirr method Hneigh irn Hyears ire Hpump}

The variables of Hgjicy include two variables: i) the credit statug i, @ dummy variable
indicating whether the household has obtained credit ircthieent year, and ii) kt credits
the number of credits the household has obtained so far.

Internal Rules
During model run, most of the model variables are subjecteianges over time. Changesin
the performance of the household module involve i) modificet of variables of the House-
hold Profile of agents, and ii) the creation and deletion a&dg. The Internal Rules only
comprise simple rules defining the changes of householdhlas, while the deletion and
creation, which involve more complicated mechanisms, aseidbed in the subsequent sec-
tion.

Itis important to understand the kinds of changes the veasatif Household Profile
undergo over time. We can categorize these variables intodategories: i) variables that
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undergo no change, ii) variables whose changes are due &ffduts of household agent
activities during simulation (e.g. changes in gross anmame angbr land resources), iii)
variables whose changes are defined by natural events,endept of the agent’s actions
(e.g. the increase of the age of the agent), and iv) changear defined by settings outside
the system, e.g. policies. The only Household Profile véggathat undergo no changes are
village code and distance to main river. All variables thhatamong the sets ofif¢ Hincome
and H,, belong to the second category and are thus subjected totdraahchanges within
the system. However, changes of variables within the thmdi faurth category have to be
modeled explicitly, since they are not a result of humani¥enwnental interactions. This task
will be accomplished by the procedures of the Internal Rules

Variables of the third category that undergo natural changelude Hge Hyives Hcattle

Hiivestock Hiabor @Nd Hiepene

The rule for the changes in age is simple. The age of the holgsekead HgeWwill increase
by 1 after each time step, until the upper bound ggais reached. The rule is as follows:

t+1 = . ]

All other variables of this third category are also eventan phenomena, but they
are dfected by many causes that are beyond the scope of our stigj\ythirefore, reasonable
to proximate stochastically the values of these househtiates within uncertainty ranges
of the values of the previous time step. For all these vamlthe kind of rule follows the
same pattern. We will exemplify this pattern by the exampld gte

t+1H atte = round(tHcattle — ocattie+ random2 - o¢atid) (3.2)

wheret+1H ,dS the number of cattle at time step 1, Heaie the number of cattle at
time stept, andocaitiethe standard deviation fordgiye Calculated from empirical household
data sets. The random command determines a random numbaer {@it2 - o-caid.- Thus,
t+1H e lies within an uncertainty range of-frcattie O cattid around the value ofHqatie
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Below we will give the rules for all other variables of therthcategory, following the same
kind of rule as in the example for cattle. As some of the vdeslare regarded as integers,

they need a round command to ensure integer outcome values.

“1Hyives = round(Hyives — Twives+ randon(2 - oyives) (3.3)
H1Hsize = round(Hsjze— o'size + random2 - osizg) (3.4)
“1H)apor = round(Hapor— Tlapor+ random(2 - oiapod) (3.5)
t+lHdepend: round(*Hgepend— T dependt randon(2 - ogepend) (3.6)

whereo is the standard deviation of the single variable derivethftbe empirical data set.
(The annual variation of the livestock indexj/dstock Will be determined by the specific
biophysical sub-model of livestock dynamics.)

Variables of the fourth category comprise exclusively ables that are set externally, i.e.
policy access variables. Variables that are counted anfosgét comprise distance to dams
Hgist dams distance to water sources;kl water CUrrent credit accessdigis and number of
credits received so far §dcredits

Since new dams can be added to the initial settings of thestape as a policy, the distance
to dams for households also has to be changed automatidadiy.this, a routine checks
the distances to the various dams, and finally chooses thenomim. The procedure can be
described as follows:

for all dams : set current-dist-dam (distance from houseato)df (Hgist dams>

current-dist-dam) [ set §ikt gamscurrent-dist-dam |

The distance to water sources distance to water sourcamisigfined as the minimum of the
distance to dams and the distance to the main river:

Haist water= MiN(Hgist dams Hdist rived

The percentage of households obtaining credit is givendritee model as a policy param-
eter, whereas the amount of credit is fixed, and the periodeafitcprovision is set to 2 years.
This was the observed pattern within the study area, andbt@echanged within the model,
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since possibleféects of a diferent credit pattern cannot be derived from the empirictd da
set. Within the model, credits are given randomly withinplogulation of household agents,
whereas those with a lesser number of credits obtained srdaflavored. The variable of

Hcregitcan therefore be determined as follows:

1 if tcredit = true

t L
Heredit= { 0 if otherwise (3.7)

wheretcredit denotes whether a household was chosen to accegsrctade step t.
Changes in the number of credits that households obtaipeg &diisare calculated accord-

ingly:

tHpy credits+ 1 if tHlcredit = true

t+1 P——
Hor credits {tHnrcreditS if otherwise (3.8)

The other two components of the household agent structarejdcape Vision and Decision
Module, will be described in later chapters. The Landscaps®N, as an integral part of
the multi-level organization of the landscape, will be Haddwithin the description of the
patch-landscape module. The Decision Module will be oatlim a separate section of this
chapter (section 3.4).

Creation and deletion of agents

Agents who reach their maximum age (see equation 3.1), detede If agents within the

same compound id, i.e. living in the same compound, existaadl belonging to the dead
agentis equally distributed among these. If no such agergs a new agent is created within

this compound who inherits the land;
for all patches with (Ryner= dead agent), setyRner= New agent

Apart from land, the new agent inherits the values for allalges, that are house-
hold related (e.g. cattle amount, household size, owneishinotor pump), while personal
variables (e.g. number of wives, age, years of irrigatiqregience) are assigned values from
a random agent with age under 30. Variables concerning thet'adivelinood strategy (e.g.
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group id) are classed among personal variables and thuis obédr values from the random
agent.

But agents are not only created as successors for deletetsagat are also cre-
ated in the course of population growth. In each time steppthpulation of households is

recalculated, based on the logistic growth function:

CPye

PO =23 Po(et — 1)

(3.9)
whereP(t) is the population size at time stépP, the initial population size at time 0 (i.e.
the year 2006), an@ andr parameters. In each time sté{f) — P(t — 1) + D(t), new agents
are created, wherB(t) is the number of agents deleted in time step t without sswes
These agents are allocated randomly to the compounds dfiuithe area, i.e. to patches with
Pcompound= 1. The locations of these patches had been determined pttioe development
of GH-LUDAS (for details see section 3.6). These new agethpiall their variable values
from another random agent under age of 30. To ensure thatalbgents obtain land, these
agents are given priority within the moving phase of landuggition (see section 3.4.2),
where agents search for new patches. That is, new agentdavedito search for unused
patches before any other agent. If any of these unused pach@ot owned by anybody, the
ownership of these patches is transferred to the new agés.is'the first mechanism that
ensures the ownership of patches. The second mechanisimtsmighe inheritance system
as defined above. In case an agent (without successor) kdeelgnd is equally distributed
among the other compound members, including the formemyagent.

All these mechanisms are geared to observations in the anedy The inheritance
system as described here ensures both inheritance witlcassor and without, which both
happens. Although in cases of a dissolved household, i.eescaithout a successor, the
available land is not equally distributed among the renmgmouseholds, but is usually dis-
tributed according to internal family hierarchies, the m@eh of equal portions was the most
straightforward method to describe the complicated inhece structure.
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3.2.2 Structure of the household agent group

The household agent group is a collection of household ageith similar socio-economic
features and is thus assumed to exhibit similar decisiokimabehavior. The separation
of these groups is based on so-called grouping criteriachvform a subset of the set of
Household Profile variables. After each time step, everyaigeassigned to the group with
the most similar values among the grouping criteria. Acicaytb the group the agent belongs
to, he is endowed with the group-specific set of behavioredpaters. The identification
process of the range and values of these parameters as wdlltlas range of grouping
criteria will be outlined in detail in Chapter 4. Followinbi$ mindset, the structure of the

household agent group can be formally expressed as follows:
Household Agent Group {Giq, Gcat cod» Cbehavio}

where Gy is the group identification code,& coe the categorizer cdicients of grouping
criteria, and Gepaviorthe set of group-specific behavior parameters.

Categorizer codficients and Agent Categorizer

The set of grouping criteria is designed to represent tfferénces among the agent groups,
whereby each group has its own set of categorizefficients that serve as weights for these
criteria. These cd&cients play a role in the routine that assigns an agent totaisexgent
group, called the Agent Categorizer. The Agent Categoizan automatic classification
procedure that categorizes all agents into their nearespgrafter each time step. It consists
of an m-logit model, which calculates the distance of eadnatp each group, and an as-
signment procedure, which finally assigns the agent to ldarest’ group. The distance of

an agenf to groupg Disty is calculated as:

gt 2i BigVi

Disty = —Zh S,

(3.10)

whereV; are the values of the grouping criteria of agéntey a constant, and thg, the
categorizer ca@écients for groupg (The range of grouping criteria as well as the values
of the categorizer cdkcients as a result of the m-logit model are presented in @nhapt
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According to the calculated distances, agarns then assigned to the group with minimum
Disty:

Hgroup= g with(Disty = min{Disty}) (3.11)

After the agent has been assigned to his nearest group, ¢héwdl adopt the new behavior

template of the group, as oulined in the following section.

Group behavior
The agent group behavionghaviorconsists of a vector of behavior parameters that are iden-
tical for all group members:

Gpehavior= {[Labdy], oag, [LabIG], o, [Big], Tig, [%0drYig, ojg} (3.12)

where Labd,] and [Labry] are the vectors of labor allocation percentages in the diy a
rainy season respectively] a vector of preference céiecients used for the m-logit model
of land-use choice for the rainy season, andi{yg] a vector of percentages of dry-season
land-use types of the cultivated area in the dry seaspis, the respective standard error for
each vector.

The labor allocation vectors consist of the labor allogapercentages, which rep-
resent the percentage of the total labor pool allocated toglesactivity by a household.
The range of activities is the same for both seasons, andrisgsultivation, trading, food
processing, handicrafts, migration and other income-geimg activities (e.g. white collar
jobs). During focused interviews with local farmers andfiebservations, these six activities
have been identified to be the main income-generating des\among the local population.

Whereas the choice among rainy-season land-use types isledooly an m-logit
regression wittBg being the respective preference fimeents (see section 2.4.2), a m-logit
model was not used for predicting the choices among dryeseland-use types. Instead,
simple group-specific percentages of land-use types were, since the available data set
about dry-season farming was not large enough to set up argitnrhodel for dry-season
land-use choice. Moreover, ftiérences in cropping patterns among the two land-use types
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within this season were so small that explanatory variatdedd not adequately reflect these
differences. Therefore, group-wise percentages of the lamdypes of the cultivated area
were used, which turned out to be a more robust approach.dEinéfication of the decision
variables as well as the calculation of the preferenc&icoents will be outlined in Chapter 4
for both seasons.

All group behavior parameters were determined by statikticalysis of group-wise
empirical data sets, being the same for all group membersekter, within the model, the
behavior parameters for a single agent are generated bgmandiues around the fixed pa-
rameters of the group, bounded by the related standardegrétor instance, the preference
codficient for land-use typefor the rainy season will be a random value within the range
(Big — Tig, Big + Tig). Such slight deviations of the average group behaviorth@yewith in-
dividual Household Profile variables ensure a heterogesdeaision behavior even among
agent group members.

3.2.3 Population

The population class is the collection of all household #égetogether with a database of
statistical parameters about the population. In land-ngdand-cover change research, not
only the changes in land use or cover, but also the relatedgesain the socio-economic

structure of the population need to be monitored. This walcbvered by various statistical

parameters about income patterns during the simulatios. riihe class of population can

therefore be formally expressed as:

Population= {{Agents}, Stat}

where Stat consists of the following population performeamicators: i) overall average
income per household, ii) overall average annual incomeggita, and iii) the Gini Index of
household income distribution. The Gini Index is a statatmeasure to describe the degree
of disparity within a pre-defined population, and is moseofapplied to measure the equity
of income distribution (Gakidou et al., 2000). The valuegto$ codficient lie within the
range of 0 and 1, and the higher the value, the higher the aligéguMathematically, the Gini
Index is the standardized area between the Lorenz Curveamfamly distributed popula-

tion and the observed population (Dorfman, 1979). The Loi@uarve of income is a graph
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that for the bottom x % of households shows what percentageo§ e total income they
have. The percentage of households is plotted on the xtaeigercentage of income on the
y-axis. If the curve is a diagonal line, the population is istate of total equity (see Figure
3.3). An unequal distribution will result in a curve belovettiagonal. The Gini Index is then
calculated as the ratio of the area between the two curvetharatea below the diagonal.

3.3 System of the environment: the Landscape Module

The Landscape Module represents the state and procesdes @fiironmental part of the
coupled human-enviroment system of land/oseer change. Just as the Human Module is
represented in the form of a three-fold hierarchy, this n@dualso conceptualized as an or-
ganization of three levels: the landscape agent or patel,ahdscape Vision, and the entire
landscape (see Figure 3.4). The landscape agents areamf@edy congruent land patches
of size 30 m x 30 m, consisting of two main components: thetpagtate variables and the
internal ecological sub-models. The state variables cmajoth biophysicanvironmental
attributes (e.g. soil texture, distances), which are iedéelent of human actions, and vari-
ables which are related to the human part such as land tendngsa. The internal ecological
sub-models consist of i) productivity functions for all tanse types of both seasons, ii) a
land-cover transformation model, which regulates the emsion of one land-cover type to
the other, and iii) a livestock dynamics sub-model.

As already outlined in the previous section, the Landscap®¥is the environ-
ment of a household agent in which he sets actions. Each holdsagent has his own
Landscape Vision, which, in multi-agent-based terms, iste®f a set of landscape agents
located around the compound patch of the household agerthin/his environment, the
household agent has (limited) insight into its features aftidbutes, makes land-use deci-
sions and creates impacts on this environment. These isypeciccumulated over time and
aggregately result in spatio-temporal dynamics of theaVkmdscape (Le, 2005).

The entire landscape is the collection of all landscape tagarpatches, being the
emergent result of both the changes and interactions ofitiggedandscape agents. Due to
these interactions, which can be either direct or indireet, mediated through household
agents, the change of the entire landscape is not only theotine single changes of the
patches, but must be rather regarded as an emergent phemogreated by the interactive
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Gini Coefficient =

A+B

. Lorenz Curve

Figure 3.3: Lorenz curve and Gini index

collective of landscape and household agents.

3.3.1 Structure of the landscape agent

The structure of the landscape agent can be formally exguless
Landscape Agent {Patch Profile, Eco-Sub-models}

where the Patch Profile is the state of the landscape agehiding both human-related
and biophysical variables, and Eco-Sub-models is theaadie of all ecological sub-models
including the productivity functions and the land-covansformation model. A detailed

specification of these components is given below.

Patch Profile

The set of state variables of a patch consists of six comgsnieiophysical variables g phy3,
environmental variables {R\), tenure properties (Eura, the land-useover status (§atug.
yield (Rjieiq), and irrigation-related parametergJ

Patch Profile= {Ppjiophys Penw Prenure Pstatus Pyield: Pirr}

Biophysical conditions comprise the following variables:
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Entire Landscape

Landscape Vision

| Statistics | —
Landscape Agents HOUSEHOLD
Landscape Agents
| | I MODULE
1 > Decision
Module
>
Landscape Agent
| Patch Profile < POLICY
MODULE
| Ecological Sub-Models l= C—

Figure 3.4: Integration of the Landscape Module in GH-LUDAS

I:’biophys: {Psoil fertility» Psoil texture I:)gwly I:)gwry Puetness Pupslopt}

where Ry fertility 2Nd Roil texture@re soil type and soil texture respectivelyfPand Ry
are average groundwater depth and groundwater rechaggectéevely, during the dry sea-
son. RyetnesdS the topographic wetness index, angfopels the upslope contributing area.

The environmental variables exclusively comprise distarto environmental features:

I:)env: {Pdist riven I:)dist dams I:)dist water I:)dist borde}

with Pyist river b€INg distance of the patch to the main rivegisPyamsdistance to dams, and
Pgist waterdistance to water sources, i.e. main river and dams. Thissyalniable is just the
minimum of the two previous ones, similar to the calculatadrihe equivalent variable for
household agents. 4Rt porgeriS the distance to the national border to Burkina Faso in the
north.

The tenure properties of the patch can be summarized asviollo

Ptenure= {Pownes I:)dry-user I:)rainy-user Puist uset

where Runerindicates the household agent who owns the patch. But sireceder of the

patch does not necessarily need to be the owner, we alsaetlhe variables of R;.yser
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Figure 3.5: Patch Profile

indicating the agent who uses the patch in the dry seasorRaigluser the agent who uses
it in the rainy season. If the patch is not used or owned by adybthe variables will get
the value 'nobody’. Rst yseflenotes the distance of the patch to its rainy-season ussr (t
variable is only needed for the rainy season).

The land-usgover status of a patchyR;,scomprises the following variables:

Pstatus= {Pcover dry Peover rainy Pand use dry Pand use rainyPcompoun&i

with Peover dry@nd Rover rainyindicating the land-cover type in the dry and rainy season,

respectively, Rnd use drjhe land-use type in the dry season, ang&use rainthe land-use
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type in the rainy season. If a patch is not used during a spesgfason, the value of the
land-use type is set to O for that seasogpnfpoundS @ dummy variable, indicating whether a
compound house is present on the patch.

The yield status of the patch simply reports the amount délyrethe local currency (Ghana-
ian Cedis) from the dry and the rainy season:

PyieId = {Pyield dry: I:)yield rainy}

The category irrigation includes the following two varies! Ryigapie being a dummy vari-
able indicating if a patch is irrigable, anglR e, Which is called the irrigation cdicient,
with values between 0 and 1 indicating the irrigation pasdrdf a patch. The calculation
of this codficient, the irrigability, as well as a detailed explanatidrire other biophysical
variables will be given in Chapter 5.

Ecological sub-models

As mentioned in the introduction, there are three kinds ofagical sub-models to be built
into the model of the landscape agent: productivity fumiéor each land-use type, a live-
stock dynamics model, and a land-cover transformation in&ade further details, see Chap-
ter 5.

i) Agricultural productivity functions

The agricultural productivity functions are patch sub-misdalculating the variableggq dry
and Rjield rainyin response to variables of the Patch Profile and the usexsuae decisions.
Since the importance of biophysical attributes and the kihthnd management fiier be-
tween the two seasons with respect to crop productivityellynodel for each season was
developed. Although the range of variablefeli between the two seasons, the general form
of the function is the same (see section 5.3.3).

ii) Livestock dynamics model

The livestock dynamics model is a sub-model to calculatevr@able of Hyestockin re-
sponse to random annual variations and forage availghiliey latter being dependent on
both rainfall data and land-use behavior. The livestoclexndf a household is basically
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modeled as being dependent on the livestock index of thequewyear (with a random er-

ror), reflecting changes in the stock due to sale, deathasksg etc. The forage availability
on the other hand restricts the total number of livestockiwithe study area, thus reducing
the total number of livestock equally for all householdshd carrying capacity with respect

to forage availability is reached (see section 5.3.4).

iii) Land-cover transformation model

The land-cover transformation model is a model to simulh&e donversion of one land-
cover type to another, whereby two variables describe tawr distributions, one for the
rainy season, Byer rainy and one for the dry seasornydgger gry For the establishment of the
model, changes of both variables should thus be analyzednaad@led if necessary. The
range of land-cover types for both seasons comprises ‘roeétter’, 'bare land’, 'grassland’
and 'cropland’. Changes among these land-cover types arendby both anthropogenic
influence (land-use change) and natural processes indepeotihuman interference (e.g.
grass growth), which both need to be considered in the asaly's section 5.3.5, the full
land-cover change analysis and the parameterization afithsequent land-cover transfor-
mation model will be presented.

3.3.2 Entire landscape

The entire landscape is the collection of all landscape tagéogether with a database of

statistical spatial parameters:
Entire landscape {{Landscape Agents}, Spatial-Stat}

The spatial statistical database Spatial-Stat compriessriptive statistics about
land-cover and land-use evolving over time. Percentagéseoflfferent land-use types of
the total cultivated area are computed for both seasonseghssvthe simulated land-cover
fractions of the total area under study. The temporal dyonarof these parameters can be
observed via graphs on the simulation interface of the GHDAS model.
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3.4 Structure of the Decision Module

The Decision Module is an ordered collection of procedueggiiating the agent’s behavior
regarding his livelihood strategy and land-use decisiéithiough this module is introduced
here as an autonomous part of the model, it is in fact an iatg@grt of the household agent,
governing the behavior of that agent. It works as a schedptedramme of procedures
reacting to parameters from the household agent and hissktapé Vision, resulting in agent-
specific reactions and actions on the environment.

As the kinds of decisions to be madéfdr among the two seasons in the study area,
the Decision Module was designed to consider thefferénces. Thus, it was divided into
two subsequent collections of routines, one for each seasarting with those for the dry
season. The general scheme of the two main routines is sist#ating with the labor allo-
cation among the various income-generating activitidgyi@d by the cultivation of its own
patches. If labor and cash are still available after thedtilization of its own patches, the
agent will search for new patches, and finally, the incommfoultivation (through produc-
tivity functions) and other income-generating activitvedl be calculated. As cultivation in
the dry season is only possible via irrigation, two addiilhecision sub-models precede the
dry-season procedures, including the decision to irrigatd the choice of irrigation technol-

ogy.

3.4.1 Dry-season procedures

The dry-season proceduresggy) can be structurally expressed in the form of the following

consecutive routines:

Dproc: [Dirr, Dmethod Diabor Dstatio Dmoving’ Dincomd

where Oy, is the decision for irrigation farming, Rethogthe choice of irrigation technology,
Djaporthe labor allocation procedure gfaiicthe static phase of cultivating own patches, and
Dmovingthe moving phase for opening new patches, apgddethe income-generating pro-
cedure for the dry season.
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Irrigation choices (Djr ) and (Dmethod)

The procedures of irrigation decision and method choiceezaeined here in combination,
since they form a nested hierarchy of decisions with resggerntigation-related decisions.
For modeling this decision procedure, we decided to use aaldonested m-logit model.

The first sequences of the m-logit model will simulate theegahdecision of a household
agent to engage in irrigation farming, and the second wahtkimulate the choice of irriga-
tion technology, if the decision on irrigation in the firsg¢gtis positive. This two-fold nested
decision is taken by each household agent in each time stiye d&eginning of the model
run, and is independent of the group of agents.

For the first sequence of the nested m-logit model, we emglbgesehold-specific
data reflecting the economic capability of a householdird irrigation farming, including
financial capital, human resources, land and knowledge s&ébend sequence then regulates
the choice of irrigation technology, which is a choice amtinge alternatives: dam irrigation
(in case a dam is located within the Landscape Vision) andrivesine irrigation methods,
i.e. the use of hand dug wells via buckets, or dugouts via nmimps. The choice of these
three options is based on the following indicators: i) tharficial capacity of a household,
since the three options require varying monetary investsyei the availability of a dam
within an acceptable distance, and iii) the personal hystbthe considered household agent
regarding irrigation method and practice. The range ofaldeis used for both levels of this
nested decision m-logit model will be outlined and justifiedletail in Chapter 4, together
with a presentation of the calculated m-logit fiagents.

Labor allocation procedure (Digpor)
Within this labor allocation procedure, the total dry-seasabor pool of the household is
allocated to the various production lines, including saltion, trading, food processing,
handicrafts, migration and other income-generating aes/(e.g white collar jobs). The
percentages of labor allocated to these various produlities are defined by the household
agent group, reflecting the production strategy of theilveld or agent group the household
belongs to.

But since the amount of labor allocated to cultivation ratthepends on the deci-
sions of the household regarding irrigation than on the ageoup, the amount of labor is
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defined by the irrigation choices: If noirrigation is praetdl during the dry season, no labor is
allocated to the cultivation production line. If, on the etihand, the decision to do irrigation
farming is positive, a certain amount of labor is allocatedhis production line, depending
on the choice of irrigation method. The reason for thi§edentiation is that in the study
area the labor input requirements vary highly among thgation methods, with bucket ir-
rigation being twice as labor-intensive as pump irrigatiétter the amount of cultivation
labor has been set, the spare labor pool is allocated to thedimaining production lines,
as pre-defined by the agent group. The total labor pool fodtiieseason is the number of
labor days per household spent on income-generatingtaesiyi.e. the six production lines).
For the base year 2006, which is the starting point of the padllis labor pool was calcu-
lated from field data for each household, i.e. the dry-sedsmed survey (see Appendices
B for questionnaire). For each subsequent year, the labaripahe model is recalculated

dependent on the value of the preceding year:

t+alooI dry= "Hpool dry= Tpool dry + random(2 - opool dry) (3.13)

whereopool dry IS the standard deviation of Jgo gry  The labor pool represents the labor
allocated to income-generating activities and is allowetiet beneath the labor capacity of
the household. Using this approach, underemploymentimstef an incomplete use of labor
capacity of the household, is considered, as is the casedony households in the study area.

Static phase (Riatic)

Since itis natural to first cultivate own patches and thek fooother patches, this procedure
precedes the routine of borrowing new patches. Since patchesidered for cultivation

during the dry season need to be irrigable, these patchestbde located either within an
irrigable dam area, or within the irrigable area along thenmmver. The determination of

this riverine irrigable area will be given in Chapter 5. Thiay, a household agent either
owns no irrigable patches, patches along the river, patloeg) a dam, or both of the latter
two. Interviews with local farmers suggest that if housesabwn both dam and riverine
patches, the dam patches will be preferred, as they aredbss intensive and more cost

effective. Therefore, the virtual household agent is prograchto put dam patches under
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cultivation, before shifting to riverine land holdingsgexdless of the irrigation choice made
within the irrigation decision procedures. These decsiare considered to only play a role
in the moving phase of the agent when searching for new latathes. In the following, we
will denote the set of owned patches along a dam ggdjamand the set of owned irrigable
and riverine patches as;Ha-river

Before we present the algorithm of theR;c procedure, we have to introduce the
concept of how to determine the size of the area a single hoigés able to cultivate.
The size is dependent on two factors: the financial resowttd®e household, as irrigated
cultivation is associated with relatively high costs fortifezer purchase and maintenance of
the irrigation system, and labor resources. Since the reapgints of labor and input capital
vary highly among the three irrigation types, the possibi@ber of patches to be cultivated is
calculated for each irrigation type separately, dependmghe available financial and labor
resources of the household. This calculation is based amearliregression for each type,

with explanatory variables of cultivation labor pool andome:
iCmax: la+ ib1 ’ |'llabor-pool dryt ib2 * Hincome (3.14)

whereiCpy,axiS the maximum number of patches to be cultivated by a houdghith i index-
ing the type of irrigation method. This paramet€p,, calculated by this linear regression
model then serves as the upper limit for the model of cultvat

Thus, the number of owned irrigable patches and the numbeagimum possible
cultivated patchefC 55 Serve as upper bounds for the number of cultivated patchibsnwi
the procedure of Qaiic However, regarding the cultivation along dams, anothmitiing
factor plays a role, which is represented by the policy ohdiraitation:

In GH-LUDAS, the maximum dam area a single household ageilaged to cul-
tivate (called Linpgm) can be specified outside the model as a policy parameters, This
parameter serves as another limiting factor for the numbeultivated patches if these are
located along a dam. Following this mindset, the cultivabbown land holdings or the static
phase can be structured as follows:

1. Set Used-Patches 0
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2. Set the irrigation method i to dam.

w

Calculate the number n of owned patches actually cudtiVay the household:

n = min(count(Hyrea-damh 'Cmax LiMpam

Select n random patches from the sgtdd.qam

For each of these n patches choose its land-use type

Set the input parameters of labor and fertilizer, depende the type of land-use
Set the irrigation method i to the riverine method with tinghest probability

Set Used-Patches Used-Patches

© © N o g A

Calculate the number n of owned patches actually cuiti/ay the household:

n = min(count(Hyrea-rive 'Cmax- Used-Patches)

10. Select n random patches from the sgtH iver

11. For each of these n patches choose its land-use type

12. Set the input parameters of labor and fertilizer, depahdn the type of land-use
13. Set Used-Patches Used-Patches

Moving phase (Dnoing)
The moving phase is similar to the static phase as depictedealapart from the fact that

the choice of irrigation method and the Landscape Visioy pl@ole in this procedure. As
the Landscape Vision is the environment a household agerdaaupon, the agent will only
search for irrigable patches within his individual Landsea/ision. In the following, we
will denote the set of irrigable dam patches within the Laxage Vision not used by another
agent as Ljzm and the set of irrigable riverine patches within the La@agscVision not
used by another agent as ), Regarding the choice of irrigation method, it is a natural
assumption that a household agent can change his choicagattivn method during his
search for irrigable patches. For instance, if the agenvsd® a riverine irrigation method,
but patches along the river are no longer available, he Wift 0 a dam if one is located
within his Landscape Vision. It can also be the other way dpure. an agent first chooses
dam irrigation, but then has to shift to riverine irrigatibno dam patches are located within
his Landscape Vision. Thus, twoftérent procedures are presented here, dependent on the
first choice of irrigation technology. These two procedu€®mqying are similar to the
mindset of the proceduredliicand can be summarized as follows:
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If (Hirr methog= dam) run the following procedure:

N

© N o g kW

10.
11.
12.

Set the irrigation method i to dam.

Calculate the maximum number n of patches actually @ity by the household:
n = min(count(LVgyam, 'Cmax- Used-Patches, Ligy)

Select n random patches from the sepiM

For each of these n patches choose its land-use type

Set the input parameters of labor and fertilizer, depende the type of land use
Set Used-Patches Used-Patches

Set the irrigation method i to the riverine method with inghest probability
Calculate the maximum number n of patches actually @ity by the household:
n = min(count(LVsiver 'Cmax - Used-Patches)

Select n random patches from the sef;l/f

For each of these n patches choose its land-use type

Set the input parameters of labor and fertilizer, depatdn the type of land use
Set Used-Patches Used-Patches

And If (Hirr methog= Well or motor pump) run the following procedure:

ro

© N o g kW

10.

Set the irrigation method i to the riverine method with tinghest utility

Calculate the maximum number n of patches actually @ik by the household:
n = min(count(LV;iven), 'Cmax- Used-Patches)

Select n random patches from the sef;lf

For each of these n patches choose its land-use type

Set the input parameters of labor and fertilizer, depenale the type of land use
Set Used-Patches Used-Patches

Set the irrigation method i to dam.

Calculate the maximum number n of patches actually @ity by the household:
n = min(count(LVgam, 'Cmax- Used-Patches, Lifym

Select n random patches from the sefL\

For each of these n patches choose its land-use type
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11. Setthe input parameters of labor and fertilizer, depehdn the type of land use
12. Set Used-Patches Used-Patches

Income generation procedure (Bhcome

Since cash income plays an important role within the couplamdan-environment system,
as it serves as the financial basis for land-use relatedtmegds, the income generation
procedure is designed as a routine to calculate both caslyraxsd income. However, it

is assumed that cash and gross income for the non-farmtagiare identical, including

the activities of trading, food processing, handicraftgyration and other activities, since a
differentiation among cash and gross income for these acsiisteedificult issue and reliable

information was not available during the surveys.

The same is valid for the generation of gross income for la@s as it was not
possible to measure the net annual gross income of an aniow. sBut as the sale of
livestock was captured during the household surveys, at tha annual cash income of this
production line could be measured. The seasonal cash intoméivestock Hnc jive dry Was
calculated using linear regression based on the amounissittick, i.e. livestock index:

Hinc live dry = Sivedry + Bivedry - Hiivestock (3.15)

whereaeqry andbiveqry are parameters calculated using the statistical analysgramme
SPSS.
Using a similar approach, the income of the non-farm aotisiis generated based

on the amount of labor allocated to the various productioadi

Hinc trad dry= @traddry + Byraddry - Hiap trad dry (3.16)
Hinc food dry= @fooddry + Dooddry* Hiab food dry (3.17)
Hinc arts dry= artsdry + Dartsary - Hiab arts dry (3.18)
Hinc migr dry = 8migrary + Bmigrdry - Hiab migr dry (3.19)
Hinc others dry= @othersdry+ Dothersary Hiab others dry (3.20)
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The gross income generated by the production line of ctitiMdHgross inc cult dry IS SImply
calculated as the sum of yield of all cultivated patches:

ngoss inc cult dry= Z Pyield dry (3.21)

all cultivated patches

whereas the calculation of cash income from this produdin@follows a diferent approach:
Since crops cultivated in the dry season mainly serve asaragls and are sold out to traders
or at markets, the cash income of dry-season cultivationddeted as a linear regression
function based on the gross income of cultivation as presesibove:

Hcash inc cult dry= Seultdry + bcultdry : ngosg inc cult dry (3.22)

whereagidry aneyiary are the parameters of this regression.

As the policy of credit access plays a role in the study arehéngeneration of
additional income, it must be a factor for this income modelditional financial resources
allow a household to generate more income per labor unitiwias to be considered in this
routine. This additional income per labor unit for each prattbn line was derived from the
empirical household data set, including both householdshtad had access to credit and
households that had not. This additional income was theeddtil the incomes for each
production line of a household once the household had atcessdit: This procedure can
be depicted as follows:

credittIHjnc j gry = N0 CreditHjnc j gry + & - Hiab i dry (3.23)
where i indexes the production linf@editIH;, . ; 4y is the income generated by the access to
(the first) credit,no credit(IH;, - ; 4, the income generated without credit, aamds the line-
specific factor of additional income per labor unit.

The empirical data set did not provide any information alibatincome structures
of households that had access to credit more than once. Howeis a natural assumption
that the additional income generated by an additional tetlines with the number of
credits already obtained, i.e. th&ext of each additional credit wear&.0This decline in
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the dfect of additional credits is regulated by the global-poleyameter called the credit
deflating factor, which has values between 0 and 1. In the chsige value 0.5 for this

factor, the &ect of credit on income is only 50 % as strong as fffiec of the previous credit
on income. Thus, the income converges against a certaih livith the number of credits

obtained K cregitsincreasing. Mathematically, this relationship can be egped as:

credit(nH; ¢ i dry
no credit(nH

(3.24)

credit(ml)HinC i dry
no credit(h 1), ; dry -1

- 1) - Credityes = (

incidry

wherei indexes the production lingy, denotes the number of credits already obtained, and
Crediyef the credit deflating factor. This equation can be transfarswech that the income
for then + 1th credit can be calculated:

credit(m—l)HinC idry =

credit(n)ﬁnC i dry
~ || ho credit(my; e ; dry

(3.25)

- 1] . Creditdef'i' 1) .ho Credit(ml)HinC i dry

3.4.2 Rainy-season procedures

Similar to the dry-season procedures, the rainy-seasaeguoes (called o9 can be struc-
turally expressed in the form of the following consecutigatines:

Rproc: [Riabor Rstatio Rmoving’ Rincomd

where Rgporis the labor allocation proceduregiicand Ryoyingthe static and moving phase
of cultivation, and R,comethe income generating procedure for the rainy season.

Labor allocation procedure (Rjapor)

In this procedure, the labor pool for the rainy season iscatied to the dferent production
lines, which comprise the same range of activities as in theehson. As for the dry season,
the percentages of labor allocated to the various actvdre defined by the agent group,
which reflects the livelihood strategy of the household iesiion, whereby the total annual

labor pool Hyool rainyis calculated accordingly. Analogous to the dry seasomptbeision of

86



Specification of GH-LUDAS

credit leads to a small shift of labor allocation by a factmtthas been derived statistically
from the empirical data set. This procedure is equivalettieéalry-season equation, but with
rainy-season specific parameters, which were identifietguSPSS.

Static phase (Ratic)

Compared to the dry season, financial resources play a ledsdor cultivation during the
rainy season. Therefore, the maximum argg&a household is capable of cultivating is
modeled as only being dependent on the available labor pogLitivation. This way, @ ax
can be formulated as follows:

Cmax = Hiabor cult rainy/ llab mean

where Hapor cult rainy!S the available labor for cultivation, an@d mearls the empirical mean

of labor input for a single patch. Since only patches withlémel cover 'cropland’ or 'grass-
land’ are suitable for cultivation, patches that are costdrg bare land or forest have to be
ignored during the routine of §&iic Thus, we will denote the set of patches owned by a
household covered by either grassland or cropland gs,HFurthermore, it was observed
that a farmer usually prefers to continue cultivating thiepes that have been used the year
before. The reason for this is that he usually reserves lgras$ioldings for the feeding of
his livestock. Therefore, within this routine, first all paes with the land cover 'cropland’
will be selected until all patches have been cultivated.nfthe procedure will start selecting
grass patches. The procedurgR.can be summarized as follows:

1. Set Used-Patches 0

2. Calculate the number n of owned patches actually cu#tdzay the household:
n = min(count(Hred, Crmax

3. Select n random patches from the sgtdd

4. For each of these n patches (with preference of patchesedwy cropland) choose
its land-use type

ol

. Set the parameters of labor input and management, demtemdéhe type of land-use
. Set Used-Patches Used-Patches

(o2}
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Moving phase (Rnoving)
In the moving phase, the household agent searches for nehgsatithin his Landscape

Vision, if labor is still available. According to field obsettions, a farmer usually tries to
continue to cultivate plots he already asked for during #s¢ $eason. Therefore, the moving
phase can be separated into two sub-routines: In the fiesthdusehold agent will try to
continue cultivating the patches he has already acquiredhe second, he will scan his
Landscape Vision for new patches, and if he is successfulk them as being borrowed.
These two procedures can be summarized in the followingydadenotes the set of still
unused patches within the Landscape Vision suitable fdivation (i.e. either grassland or
cropland) and g the set of patches borrowed by the household and not yet ysadyb
other household:

1. Calculate the number n of patches actually cultivatedhbyhbusehold:

n = min(count(Hor), Crmax- Used-Patches)

Select n random patches from the sggH

For each of these n patches choose its land-use type

Set the parameters of labor input and management, deptsordéne type of land use
Set Used-Patches Used-Patches

o gk w N

Calculate the number n of patches actually cultivatechbynbusehold:
n = min(count(LVared, Cmax - Used-Patches)

~

Select n random patches from the sgidd
8. For each of these n patches (with preference of patchesembby cropland) choose
its land-use type
9. Set the parameters of labor input and management, deptesdéhe type of land-use
10. Set Used-Patches Used-Patches

Income generation procedure (Rcome
Analogous to the dry-season procedure, both cash and grossies are calculated. The

equivalent equations are as follows:

Hinc live rainy = Siiverainy + Biverainy - Hiivestock (3.26)
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for cash income of livestock, and
Hinc i rainy = @rainy * Birainy - Hiab i rainy (3.27)

with i indexing the production lines as in the dry-seasorcpdure, an@yainy andbiainy being
the respective parameters. Equivalently, the gross indoonecultivation Hyoss inc cult rainy
is calculated as:

ngoss inc cult rainy= Z I:)yield-rainy (3.28)
all cultivated patches
with Pyield rainy 0€INg the yield of a single patch, as calculated by the lss&tapecific pro-
ductivity functions.

Regarding the calculation of cash income from cultivat@wlifferent approach is
needed, because the pattern of crop sale is distinct fromdrtheeason. Most of the harvest
is not sold, but stored and mainly used for consumption gutie months after harvest.
Nevertheless, some of the crops such as rice and groundimutsecconsidered as cash crops
to a limited extent. This way, the amount of sold harvest isdependent on the total gross
income of cultivation as in the dry season, but merely on ype and amount of cultivated
crops. Thus, the function of cash income for this season wagded as follows:

Hcash inc cult rainy= @ + Z bi - Cult-Area (3.29)
i

where Cult-Aregis the total cultivated area of the land-use type i of the bbo&l. This
way, the amount of cash income reflects the pattern of thecehaficash land-use types and
non-cash land-use types. For the rainy season, the impdae dirst credit on the dierent
income-generating activities is modeled in the same wayiathé dry season, but with the
corresponding parameters:

credit(1H

incirainy = no Credit(lHinc irainyt & - Hiab i rainy (3.30)
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wherei indexes the type of production line, and ai is the additionebme per labor unit
generated by the first credit. The income generated by fuctieglits is then calculated using
the same algorithm as in the dry season.

3.5 Global-policy Module

This module represents policy parameters in the form oflilenparameters that the model
user can set according to scenarios he wants to exploreiniiith model, these parameters
are accessible by both landscape and household agentsieatitbigefore also called global
parameters. The policy and other external factors includggH-LUDAS to be tested for
their impacts comprise

1. Dam construction to improve possibilities for dry-seasdgation
2. Credit access regulations to test thieets of credit schemes on the combined liveli-
hood and land-ugeover pattern

3. Population dynamics and IPCC rainfall scenarios.

A justification of the choice of these policies will be givanChapter 6, together
with a detailed description of the policy situation in thadst area. In this section, we will
only provide an overview of the parameterization of thedee@s and their relations with the
other model components.

3.5.1 Dam construction policy

In case an institution is interested in providing an ared wite or more dams, several con-
siderations have to be made. First, the biophysical canditof the area have to be examined
to decide where and whether these conditions allow the nartgin of a dam. In addition,
the location of the dam should be selected according to ttie-sxonomic conditions of its
potential users. Otherwise, the dam will possibly not bézetl fully to its capacity if its
potential users do not have the ability or resources to dgaition farming. Therefore, the

90



Specification of GH-LUDAS

selection of the location of the dam, which should be dirtbevards a maximum benefit for
all its users, is a critical issue.

Second, the size of irrigation capacity and number of darbe tmnstructed have to
be carefully determined. As in some situations the constmof a single large dam could
match the socio-economic needs of the population, in othsex a collection of several
scattered small-scale dams is required. Thus, it is negesgsavaluate scenarios offterent
combinations of size and number of dams.

Third, to provide a maximum of potential users with the pb#ity to engage in
irrigation farming, a regulation of area limitation could taken into consideration, i.e. the
prescribed maximum area one household is allowed to ctdtat@ng a dam. The selection
of this parameter is also a critical issue, as it should enaumaximal number of dam users
on the one hand, but also a full utilization of the irrigaticapacity on the other. Accord-
ing to these considerations, in GH-LUDAS, the following graeters of the policy of dam

construction Policy;mhave been included:

Policygam= {Damjiy, Damyymper [Pamgc, Damy;zd}

where Damj,, denotes the size of maximum cultivated area, Rafperthe number of dams,
and Danj,c and Damg;;cthe location and size for each of the single dams.

In GH-LUDAS, the single dams can be inserted into the langis@ the user in-
terface via a mouse click, and a slider allows the user to é¢ffia size of the dam. Another
slider defining the maximum cultivated area can be set asuptd the scenarios to be ex-
plored.

In the model, these parameters are linked to the landscapelbas to the Human
Module (Figure 3.6). On the household side, the locationthefdams (Dafgc) regulates
the distance to dams and water sources, while fpadefines the upper limit for dam cul-
tivation for the household (section 3.4). On the landscage, she size and location of the
dam modify the parametef;fyaple Of some of the landscape patches: The paramgigfiBie
of those patches that are located within the irrigable pet@émaround the dam will be setto 1.
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( Policy Module R
Damjm
Dam|oc
4 Household Module h 4 Landscape Module N
Damg;
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Figure 3.6: Integration of the dam construction policy in-GHDAS

3.5.2 Credit access policy

Access to credit directlyfiects land-use-related household decisions, thus possiblying
an influence on the local land-use and land-cover patterms&ad observed during field inter-
views as well as by statistical analysis of the empiricahdst, that farmers with access to
credit schemes change their focus regarding their aes:iffhey may intensify some of their
income-generating activities with higher income generagiossibilities (e.g. trading, irriga-
tion), while some of the less productive activities (e.godgrocessing) might be reduced.
The additional income generated by these investments of katd cash stimulated by the
credit may be reinvested in land-use-related and otheritesi, thus gradually changing the
livelihood strategy and decision-making processes.

In the study area, the credit scheme managed by the Minikffgad and Agricul-
ture (MOFA) allows a credit of 200 000 Cedis (about 20 US $) lp@usehold. Since this
credit amount obtained by local farmers is constant, theiptesetects of a diferent credit
rate cannot be assessed from the empirical data set. Th@HbUDAS, the credit rate
must presently be regarded as constant at 20 Cedis. The samad@ifor the period of credit
access, i.e. the number of successive years a householdsofiitia amount from the credit
scheme, which was observed to be constant at 2 years.
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Nevertheless, the annual rate of households supplied wattitccan be modified as a pa-
rameter within the model. Apart from that, the credit scheae be manually switched to a
different kind of scheme than the one observed in the study aked the 'revolving credit’
scheme. The idea of this kind of scheme is that, once thetdradibeen distributed among
the population, it will be handed round until a certain pdraj time has elapsed. In other
words, the credit a household obtains from the scheme atabmting of this period will
not be paid back to the scheme, but to another householdhdh&ehold will then pay back
the credit to a third household, and so on, until a certaitoddnas elapsed. Then, the last
household will pay its debts back to the donor. We will ca# eriod of time the credit
remains within the population as the 'revolving credit pdfi The parameters defining the
credit scheme policy Poligyegitin GH-LUDAS can therefore be summarized as follows:

Policycredit= {Credityerg Creditcheme Creditey period Creditiet

where Credifercis the annual percentage of households supplied with cl€tBtitchemed
dummy variable defining which kind of scheme is activate@dBfey periogthe parameter of
revolving credit period, which is only called by the modethie scheme is of the revolving
type, and Credjjesthe credit deflating factor (see section 3.4).

As the dfects of credit access on the environment are only of an icidirure, the
direct linkages of this policy to the other system compos@ané among these policy param-
eters and parameters of the household agents (Figure Bd’)ha parameters of this policy
directly change the household variablegddis Hnr credits2nd Hyross income Changes in any
of the policy parameters result in a change of income, amchately show indirect #ects on
land-use choice and land productivity.

3.5.3 Population dynamics and climate change

Other external variables of the Global-policy Module, whare not related to policies, in-
clude parameters describing population dynamics and thieelamong possible future rain-
fall scenarios. As no reliable population data for the statga were available, due to un-
reliable and insfiicient population surveys (only 4 surveys in 1965, 1975, 18&4 2000),
no reliable model could be established for projecting feifpopulation numbers. Instead, the
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Figure 3.7: Integration of the credit access policy in GHRAS

parameters describing local population dynamics wereashtisbe set externally. To repre-
sent these dynamics we chose one of the most widely used sfodg@lopulation growth, the

logistic growth model, which can be expressed as:

CPRye

" eRe D

(3.31)
whereP(t) is the population size at time stépP, the initial population size at time 0, and
the carrying capacit and the growth rateparameters describing the convergence behavior
of the population. Fot — oo, the population size converges against the carrying cgpaci
C with growth rate or 'speed’. These two parameters are set externally by the model user,
according to the scenarios population growth to be expl¢féglre 3.8). New agents are
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created in each time step, dependent on the logistic growttefrand the number of agents
that were deleted due to the ageing process incorporatée imodel.

Finally, scenarios of future annual rainfall can be selgcbased on local climate
data as simulated by the IPCC (International Panel on Cér@&iange), which is the leading
research group with respect to global climate assessmdmg. afinual data of the rainfall
scenario selected by the model user are fed into the praitydiinctions for rainy-season
land-use types. Furthermore, a model is developed (seet@hapto calculate the forage
availability for local livestock based on rainfall data irder to determine the annual carrying
capacity for local livestock. This way, in GH-LUDAS, a dease or increase in crop and
forage productivity due to changing rainfall patterns redily influence land-use choice and
livestock dynamics and thus livelihood strategies (Figi8. The details of the integration
of rainfall data into crop and forage productivity are giverChapter 5.

3.6 Simulation protocol of GH-LUDAS

Within this section, the two main parts of the model will betlmed: The setup procedure
of the model, and the main time-loop of sequential procesidtging simulation. The setup
procedure is a routine that simulates the whole landscatiealiits household agents and
their attributes before any model run. The goal of this pdoice is to simulate as closely as
possible the state of the coupled human-environment syasatiwas in 2006, which was the
year of data collection. The time-loop procedures, on themand, represent the dynamic
part of the model, consisting of a collection of sequentralcedures, which will be run in
each time step representing one yeatr.

3.6.1 Setup procedure
The setup procedure is a routine to implement the stateblas@f landscape and household
agents, and to visualize the current land-cover patternkarview of the model. In this

section, we will first describe the routine of landscape enp¢ntation, and subsequently the
setup of household agents within this landscape.
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Figure 3.8: Regulation of agent population in GH-LUDAS

Landscape setup
The setup procedure for the landscape can be structuratyided by the following succes-

sive steps:

1. The implementation and visualization of current langlezgatterns in the study area,
based on the analysis of satellite images

2. The assignment of patch-specific variables to all patldeaded in the study area

3. The allocation of dams to this landscape via mouse clicthe examination of this

policy is desired by the model user.

As this section mainly deals with the implementation of thedel, we will only give
a short explanation of how these patch-specific attribuags been derived, and focus on the
way of implementation. The sources and derivation of thésdates will be described in
detail later in Chapter 5.

The land-cover pattern of the year 2006 was derived from at@llge images using
the ERDAS package. The first image with a higher resolutiervesl as the basis for the
digitization of the main river and its tributaries, whileetsecond provided the basis for the

96



Specification of GH-LUDAS

Global-policy Module

Choice of
Rainfall Scenario J

[ Global-policy Module ) / Landscape Module )
STATE BEHAVIOR
H . Yield Dynamics [«

group

A

Livestock Dynamics

ngoss income

Generating income
STATE

BEHAVIOR

> I:)Iand use dry

Decision Module

Y

Land-use actions > Pland use rainy

- J - J

Figure 3.9: Integration of rainfall change in GH-LUDAS

classification of all remaining land-cover types. These images were then converted to
ascii files, which store a single value per pixel, represgntine patch of the landscape of 30
m x 30 m. These ascii files can then be easily read by NetLogere®s each patch of the
view is assigned its specific value of land-cover. Within ¥iew, these diterent land-cover
types were then visualized byftérent colors.

While the land-cover patterns are visible within the vidwg bther patch attributes

are only stored but not visualized. These variables incloggtutional attributes (fiage,

Pcompounds distances (Rt river Puist dams Pdist water sourcds @nd all biophysical variabes

(Pwetness Pupslope Pelevation Psoil fertilitys Psoil texture Pgwis Pgwr)- The irrigation coéicient
Pirr oet @nd the dummy variablejByanie are then calculated from this data set (see Chapter

5). All other variables were derived fromftBrent sources such as maps, GIS layers created
by previous studies of the study area, and satellite imalgethe same manner as the land-
cover data, the data were also converted to ascii files toduklye NetLogo.

The last procedure is only called if the user wishes to imeleindams within the

model. Within the view, the dam can be inserted by the usemaase click, and its irriga-
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tion capacity can be set specifically for each dam. This wagha&lam has its own specific
irrigation capacity. Each inserted dam consists of the daeifiand its respective irrigable
area. First, the procedure creates a dam as a circle aroersetfigcted patch, while the size
of the circle is defined by the irrigation capacity, and cats/éhe land cover of these patches
to 'water’. Second, the irrigable area is created along tinection of minimal elevation
(Pelevation: With the number of patches pre-defined by the value ofatian capacity. Fi-
nally, the dummy variable {Riganie is set to 1 for all patches within this irrigable area.

Household agents setup
The setup procedure for household agents can be strugtdeatribed by the following suc-
cessive steps:

1. The import of the set of 200 interviewed farmers, togeittidr their specific household
variables

2. The multiplication of these 200 households to populatdahdscape to its actual pop-
ulation size

3. The calculation of distance variables for all househald landscape agents

4. The allocation of land holdings for each household agent

In the first step, to ensure a reliable reproduction of thépepulation, copies of
those households that had been interviewed during the figlebgs will be created. These
household agents are endowed with the same set of variablége anterviewed farmers,
and are located within the respective village of the cataltm@/ithin each village, they are
distributed on the compounds as digitized by a high-regnigatellite image, i.e. on patches
with the dummy variable being:Bmpound= 1. The range of imported variables comprises all
attributes that are of relevance for the next time step ofigton, including institutional and
social attributes (e.9. fillage: Hage €tc.), labor resources (e.g.id6bp, financial resources
(e.9. Hyross rainy Hgross dry €tc.), and land resources (€.thdings-

These variables are imported as text files into NetLogo, stmting 200 values,
one for each household. Just like the ascii files, these fdede easily called by NetLogo,
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assigning each value to its respective household agengr &ie creation of the set of these
200 agents, the population will be augmented by creatingesayl these basic agents until the
actual population size is reached. These new agents apattbto the same village as their
original, and distributed within the fierent compounds in the respective village. The actual
population sizes for each of the villages were calculatenhfstatistical data sets provided by
the Ghanaian Survey Department.

In the third step, when all agents have been created, thendess of these agents
to landscape features such as main river and dams are ¢attufurthermore, if dams have
been inserted into the landscape, the distance to dams da¢egifor all landscape agents.

Finally, since virtual household agents should also owclgE as in reality, this
procedure allocates land holdings to each of the agentssizhe of these land holdings are
given by the holding variables of the agents, as called byitsieprocedure. The location of
these patches is given by the land-allocation procedurehworks as a loop. In each loop,
each agent is allowed to select one single patch, and thegwoe will be run until all agents
are assigned their specific amount of land.

The loop itself runs as follows: As long as patches withinlthedscape Vision are
still available (i.e. Byne= 'Nobody’), the called agent will mark a random patch witHumst
vision as his. If no patch within the Landscape Vision is &lde, the agent will select a
random patch within the same village, and if none of thesaeadable, the agent will select
a random patch from the whole catchment. The design of tisgulure avoids a biased pat-
tern of distances of owned patches to their respective avner

3.6.2 Time-loop procedure

The time-loop procedure consists of a collection of seqakrdutines, which will be run in
each time step (Figure 3.10). The policy parameters apari the location and size of the
dams, as well as the parameters of population growth, arlyset before simulation, but
can also be modified during the simulation, if this is of ietdrto the model user. The time-
loop starts with the update of the population, i.e. deletind creation of household agents,
allocates credit to this updated population, and thensswath the annual production cycle,
beginning with the dry-season procedures and ending waiketfor the rainy season. Finally,
agent and landscape variables are updated according teshisrof these procedures. The
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main steps of this time-loop procedure are outlined in ttievieng:

{

Delete Household Agents
* Calculate Yield

Create New Household Agents *
* g Calculate Income

End of Dry Season?

No

S

Allocate Credit
Categorize Agents

Yes (Switch to ¢ ¢

Choice of Irrigation Method Rainy Season)

!

Labor Allocation
* Update Patch Variables

Static Phase of Cultivation *
* g Calculate Statistics

Update Household Variables

!

A

Moving Phase of Cultivation

}

Figure 3.10: Time-loop procedure

1. Update of age and deletion of household agents. In this gte age of the household
agent is updated, and if the maximum age is arrived, the ageeteted.

2. Creation of new household agents. This procedure createhousehold agents ac-
cording to the new population size, as calculated by thermpeters of population
growth, and the number of deleted agents without successor.

3. Allocation of credit. According to the annual credit agseate, agents are selected
randomly to obtain credit, whils those agents are prefetinatihad obtained a lesser
number of credits do far.

4. Decision to do irrigation. In this step, each househokhagenerally decides between
doing irrigation and not doing it. This procedure is depeTtiaa both the household’s
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10.

11.

12.

13.

state and the biophysical attributes of the landscape é&xti®s 3.4.1; procedure;)).
Choice of irrigation method. If the decision to do irriget is positive, the agent will
decide here about the irrigation method he is going to useqsetion 3.4.1; procedure
Dmethod

Labor allocation for the dry season. In this step, the grgson labor pool will be
allocated to the various production lines, dependent ogitbep the agent belongs to.
Furthermore, for each credit the agent had obtained, aishiifte labor allocation is
executed.

. Static phase of dry-season cultivation. Here, the agansscultivating his own irri-

gable patches, by deciding about land-use type and inpwrtfiZer and labor. The
procedure runs as long as the required labor and cash resane available.

Moving phase of dry-season cultivation. In this step,agent will start searching for
new patches, but with the same land-use related decisioinstias static phase. The
procedure runs until the combined labor and cash resouree=sxhausted, or until all
irrigable patches within the Landscape Vision of the agemuader use.

Calculation of dry-season yield. This procedure calesléhe yield of each irrigated
plot in the local currency, using productivity functiongéssection 3.3.1).

Calculation of dry-season income. In this step, the @ghgross incomes for each
production line are calculated. Furthermore, the grossnrecis augmented according
to the credit access of the household and the credit deflttaigr.

Labor allocation for the rainy season. Similar to thesigson, the rainy-season labor
pool will be allocated to the various production lines, lgeadependent on both the
agent group and the credit access patterns of the household.

Static phase of rainy-season cultivation. Here, thentagarts cultivating his own
patches, by deciding about land-use type, managementpnpatof labor. The proce-
dure runs as long as the required labor resources are deailab

Moving phase of rainy-season cultivation. This procedsisimilar to the static phase,
apart from the fact that the agent now shifts to new patcliéghor is still available.
Once the agent has borrowed a patch from another agent, hep@d continue using

it in the next time step.
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14.

15.

16.

17.

18.

19.

The calculation of rainy-season yield. This procedatewates the yield of each cul-
tivated plot in the local currency, using productivity faionis (see Chapter 5).

The calculation of rainy-season income. Equivalertiéoraiiny season, in this step the
cash and gross incomes for each production line are cadcljlatso being dependent
on the credit access pattern of the household.

Agent Categorizer. After the season-specific procechmee terminated, the agent cat-
egorizer will allocate each agent to its nearest group,emhié values of the grouping
criteria for each group are updated according to the megerierivalues of the group
members.

Update of household variables. According to the groegtient has been assigned to,
the group-specific household variables will be updatedthéamore, all other house-
hold variables that are the result of the previous procedwikbe updated for the next
time step.

Update of landscape variables. This routine, calledath@-cover transformation pro-
cedure, will update the land-cover type for those patchashhd undergone a land-
cover change during the simulation of the previous procesiur

Statistical calculations. Finally, statistical paeters will be generated for both the
landscape and the population. On the population side, maameaincome as well as
the corresponding Gini Index are calculated, and on theslzaquk side, land-cover and

land-use fractions are calculated for both seasons.
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4 LAND-USE DECISIONS BY HETEROGENEOUS HOUSEHOLD AGENTS

4.1 Introduction

Land-use dynamics, which involve decisions of land useesnejor determinants of land-
cover changes. Thus, the critical element in land use istngain agent, who takes specific
actions to his own calculus or decision rules that drive laader change (Lambin et al.,
1999). However, in order to give a meaningful represematibsuch human agents, het-
erogeneity regarding land-use decisions among thesesageedis to be considered (Rand et
al., 2002). The importance of diversity in agent behaviocomplex systems (see Chapter
1) suggests that it is worth arffert to characterize the observed heterogeneity in an agent
population (Fernandez et al., 2003). Some recent studiesstaown that dierences in the
livelihood background of the human agents usually resulifferent patterns of land-use
behavior (e.g. Le, 2005; Caviglia-Harris and Sills, 2006ing 2006). Therefore, any clas-
sification approach to derive typical agent groups for lasd-choice should be based on a
meaningful representation of agent livelihoods.

In general, the livelihood of humans comprises resourcespital, ranging from
human, natural, social, physical to financial capital, wWreoable the employment of strate-
gies to survive and to attain desirable livelihood outcomigsh as income, food security,
well-being and sustainable use of natural resources (@Hrsi®97; Carney, 1998; DFID,
2001). Such survival strategies are intricately linkedatod-use decisions, as in rural agri-
cultural areas most of the production lines are directlyethelent on land resources. Recent
studies have shown that statistically causal analyses sdrabd data can be used to derive
such livelihood typologies of agents, as well as the speoéltavior with respect to land-use
decisions for each human agent group (e.g. Fernandez 2088; Le, 2005).

According to this discussion, this research assumes tlaiigal relationships ex-
ist between the biophysical environment, socio-econoimicacteristics of farmers and their
land-use actions, farmers withfidirent livelihood typologies living in dierent environmental
and policy conditions will have éierent behavioral patterns about land-use choices. Based
on this hypothesis, this chapter has two interrelated tlgsc
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1. To identify livelihood typologies of households, endoges factors that fierentiate
such households typologies, and, based on these endogewtars, to develop an
agent categorizing procedure.

2. To determine and calibrate land-use choice models, Wwidamd-use behavior should

be determined by the specific livelihood groups of the hoalsksh

In order to gain an overview of the living conditions and likeod background of
local farmers, first a detailed description of the sociorerpic setting of the study area is
given. Based on this background, the identification andgcaization of livelihoods are ad-

dressed, and finally the specification of the decision-ngakirb-models is presented.

4.2 Socio-economic setting of the study area
4.2.1 Living conditions

The study area consists of a typical savannah parkland,mast of the land used for small-
farm agriculture in the rainy season. Most of the area is @y scattered compounds -
large mud buildings - that are usually surrounded by farehiainmixed cropping of ground-
nuts, cereals and rice. Small grassland patches are usgalfered among the agricultural
plots, serving as grazing land for the local livestock. As déinea is mainly occupied by crop-
land and grazing plots during the rainy season, little retuegetation is left, apart from
scattered trees, which mostly have economic, medicinad@abvalue. Only along the river
banks and in stony areas, patches of dry-savannah vegetaédeft, since regular flooding
and infertile soils limit the agricultural use of this lanth the dry season, small irrigated
patches for tomato cultivation can be found mostly alongitherside, while the soils of the
remaining area are left bare.

Field observations suggest that the living conditions &agyificantly among the
different households in the study area in terms of housing guiatiisehold assets, financial
means, land and labor availability, and livestock. The coumal houses usually consist of
several houses connected by mud walls, thereby formingdthat is shared by all family
members. Many of household activities take place in thislyauch as food preparation,
cooking, eating, socializing and sleeping. The walls of ¢tbexpound houses are mostly

made of mud bricks, pure mud, or even cement in some casestodfeeare usually made
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of corrugated iron or a combination of mud and wood, whileydeiv of the living rooms
are covered with thatch. Mostly, houses made with corrubate and cement were found
among the betterfbfarmers, who were often involved in irrigation farming, weas pure
mud buildings rather represented the low-income farmeugroMany of the households
owned radios or bicycles, while donkey carts, sowing maehiand bullock ploughs were
only found among 25 % of the households. Cars and fridges alerest completely absent
in the area.

Although agriculture is the main economic activity, manyseholds are engaged
in activities such as artefacts making, wood cutting, trgdiraditional medicine, and even
white collar jobs such as teaching. The main sources of casiie include the sale of food
crops and livestock, trading, food processing and hanitiscrigield observations suggest that
better-df farmers have a tendency to derive their cash income fronngaehd white collar
jobs, while the low-income group of farmers is more reliantagtivities such as handicrafts
and food processing. Some farmers could also be categ@#&zkebstock farmers, who have
a tendency to focus on cattle rearing. In general, livestaoll especially the number of cat-
tle, turned out to be a good indicator for the household’slthgeanging from several cattle
to a few chickens. Land resources were identified to be anotteator for the household’s
living standard, as the amount of land varied strongly amioegl farmers. On average,
the holdings of local households had an area of 2.4 ha, wittmeimum of 22.4 ha and
a minimum of 0.1 ha. Another factor describing th&@alences in livelihood among local
households was the availability of labor. As such, hous#htiiat had many children had a
much lower capacity for generating income. These housslaith showed a fierent land-
use behavior, as they usually focused on mixed compouniatidin, which is the common

subsistence cultivation system in the area.

4.2.2 Land tenure

Understanding the land tenure system is essential for nmagdiile use of natural resources.
Land in the study area is perceived to be a spiritual entityickv cannot be owned by an
individual. The Tindaana or 'Earth Priest’, usually therpeteal descendant of the first
family that settled at the place, has the spiritual authianiter the land (Gyasi, 2004). The
Tindaana grants usufruct rights to families or householgach family to whom land has
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Figure 4.1: Typical compound house in northern Ghana

been allocated has the prior right to cultivate the land ippetio (Gyasi, 2004). Although
ownership rights are vested in the community, each famdgsess to land is secure. The
inheritance of land in the study area is patrilinear, witlydaw women being in charge of
the land in cases where the husband has died or is disableéti@nthle children are still of
young age.

The one who first cleared a virgin piece of land 'owns’ it, aliigh ownership does
not give the right to sell or lease the land (Gyasi, 2004).héltgh leasing of land is not
allowed, some farmers tend to lend parts of their land to famembers or friends, usually
in exchange for small gifts or even cash.

4.2.3 Agricultural land use

Agriculture is mainly restricted to the rainy period from g0 September. During the dry
season, agriculture is only possible with irrigation, abhdut 38 % of the farmers are involved
in irrigation agriculture during that season. In the follog, we will describe the range of
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cultivation systems and the farming practices for each @séasons separately.

Rainy season

Under a relatively low population density until the begimypbf this century, the main system
of farming was shifting cultivation. Nowadays, two farmisigstems are prevalent in the study
area: The compound farming system, which is a system of nixggbing surrounding the
compound buildings, and the bush fallow system, which @ipidanvolves intercropping in
out-fields operated on a rotational basis.

The bush fallow system is characterized by clearing andibgrof the vegetative
cover. This normally exposes the soil to erosion and leacleiading to soil infertility. While
the soil fertility used to be restored by long fallow periptie fallow periods have drastically
decreased owing to population pressure (Botchie et al320the compound farms on the
other hand symbolize permanent agriculture with soilligytoften maintained via household
waste and animal manure. Chemical fertilizers are hardhieghin the rainy season, nor are
there any soil conservation measures applied to enharndesidity.

Dry season

In the study area, there are two types of irrigation methbdsket irrigation using hand-dug
wells, and pump irrigation using large dugouts along therrbanks or in the main river itself.
Although there are also small-scale dams in the study dneaetcannot be used as they are
wrongly constructed. Only in the areas near Navrongo are/aieall-scale dams still in use,
apart from the two large-scale dams Tono and Vea, which asgdd west and east of the
study area.

The irrigation capacity of bucket irrigation is lower thamat of pump irrigation,
which usually results in smaller irrigated patches for igkigation. Furthermore, dugouts
and wells need to be maintained almost permanently, whigphires high labor input, and in
many cases laborers are hired. Further expenditures fop puigation involve the continu-
ous repair of the motor pumps, and the costs for oil and pettdle for bucket irrigation only
buckets and ropes are needed. The variety of crops growngltire dry season is mainly
confined to local tomato varieties, either in monocultumgsin mixed cultures with small
amounts of red pepper, onions or leafy vegetables. Fentiipplication is practiced by all
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irrigation farmers, with the main chemicals being Urea amilD

4.2.4 Main cropping systems

Since the spatial distribution and dynamics of land-usedyip of prior concern in this study
of land-usgcover change, it is necessary to obtain a valid definitiorne$é land-use types.
The dfficulty in defining the main land-use types is that many cropsgaown in combi-
nation with others, which leads to a high variety of land-tigees if all combinations are
considered. To reduce this variety in a reasonable walerdnt combinations of land-use
types were tested for their relevance to the land-use mob®lmake sure that the model
reflects the dynamics of land-use change in a reasonabldhesg land-use types were cho-
sen that were best represented by the livelihood backgrotiine farming households. This
way, the following main land-use types could be identifiedtfe rainy season: The mixed
compound system, mixed cultures based on groundnuts, mtiages of groundnuts, rice,
monocultures of cereals and a class consisting of the mirmpscsoybeang3lycine max
and sweet potatoefppomoea batatgs In the dry season, where the tomato is the by far most
prevalent crop, only the two land-use types monocultureoofatoes and a mixed culture
based on tomatoes could be identified.

Cropping sytems in the rainy season
The compound farm system is a permanent mixed croppingraysiasisting mainly of early
millet, late millet, guinea corn, cowpeas and leafy veglembMinor crops such as tobacco
and okra, which are usually grown in the inner circle of thewpound, were omitted in the
analysis due to their low quantities. This system is mosityated around the compound
buildings, and soil fertility is regenerated by technigtraslitionally involving mainly house-
hold refuse and manure from the livestock (Gyasi, 2004).s Téund-use type is the most
widespread cultivation system, covering 48.2 % of the toatittivated area in the study area.
The monoculture system of groundnuts occupies about 7.8theafultivated area.
Groundnuts Arachis hypogaegaare less nutrient-demanding than the other staples grown
in the area and can therefore be easily cultivated on gsaeelsandy-loamy soils, which
are usually not suitable for other local staples. Furtheemthere is a tendency to cultivate
groundnuts on distant plots, as this crop is less labor @iterthan other local crops.
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Figure 4.2: Typical groundnut and millet fields in the Atanétizcatchment

In Africa, the groundnut is considered a women'’s crop (Keang Finn, 2004). This is also
substantiated by an analysis of household data, showinthinaercentage of women within
a household is highly correlated to the percentage of ardagroundnuts. Groundnuts were
originally grown by women to supplement their family dietthvprotein (Kenny and Finn,
2004). However, groundnut production can also be a way fangmto earn cash income
and patrticipate in the economy. Among rainy season cropgyitbundnut is the staple most
often retailed, although, in general, the disposal rataimiyrseason food crops is quite low,
due to the subsistence nature of rainfed cultivation.

The mixed culture based on groundnuts is, with 29.1 %, therskmost widespread
cultivation system in the study area. Within this systerougidnuts are often combined with
bambara beans or cowpeas, and sometimes with late millathwielps to enhance soil
fertility. Another reason for combining groundnuts withalms on distant plots is that beans
are not eaten by birds and therefore do not require supervisi

In 86.7 % of the cases, the rice-based system consists o anenoculture. The
remaining 13.7 % of mixed cultures consist in most of the safe combination of guinea
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Figure 4.3: Typical rice fields in the Atankwidi catchment

corn and rice, and sometimes of a combination with small artsoof early millet, late millet
or okro. Until recently, most of the rice cultivated was A&fn rice QOryza glaberrima,
which was gradually replaced by Asian rid@rfyza sativa in most parts of the study area.
Rice production has increased during the last decades dareitoproved access to tractors,
which facilitates the field preparation on the heavy clalgmy soils that are usually suitable
for rice cultivation. In total, rice fields cover about 6.7 %dloe cultivated area.

The monoculture of cereals is, together with rice, the ealion system with the
greatest distance from the compound, with an average dist#rl km. It consists of élierent
combinations of Guinea cori®6rghum guineengesarly millet (Milium vernalg, late millet
(Pennisetum claucunand sometimes maiz&€€¢a mays Guinea corn, which was originally
adopted from a neighboring region, is increasingly cutédan the study area, as it is more
adapted to the reduced length of the rainy period, whichssitdy a result of climate change.
The small quantities of maize, which usually need chemiedtilizers to grow well, are
remnants of the times before the structural adjustmentrarogwhen fertilizer was locally
subsidized by the government. Cereal monocultures ardlyisudiivated along the riverside,
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where the nutrient supply is ficient, covering about 7.4 % of the total cultivated area.
The other cropping types, covering only 0.7 % of the culedatrea, comprise

monoculture of soybeans and cultures based on sweet ompbistioes, usually mixed with

red pepper. These two cultivation types had to be combinedénland-use type, since their

occurrence turned out to be too low to allocate them to twausep classes.

Cropping systems in the dry season

As the tomato is the by far most prevalent crop in the dry seé30 % of all irrigated crops
are tomatoes), the only meaningful classification of lasd-types in this season was a sep-
aration among monocultures of tomatoes and mixed cultuasedon tomatoes. The major
tomato varieties used are 'Petromech’ and 'No Name’, samexticombined with onions,
red pepper and leafy vegetables in a mixed culture systemselmixed systems amount to
about 40 % of the irrigated area, the remaining 60 % being tom@anocultures. In general,
irrigation is quite a young business in the study area. Tigaition farming in the study area
only began around 16 years ago by using bucket irrigationvadiays, about 38 % of the
farmers are involved in irrigation farming, with 35 % of thersing motor pumps, and 65 %
still practicing bucket irrigation. The choice of irrigati method does not seem to have an

influence on the choice of land-use type.

4.3 Modeling livelihood groups

As studies suggest the importance of heterogeneity in leeddecisions (Fernandez et al.,
2003), an approach to represent this heterogeneity isregtjult is a common assumption
that land-use decisions are related to the livelihoodeggsabf a farming household; thus the
diversity of agents regarding land-use decisions can bieath by a categorization of these
agents into group with individual livelihood strategiegan& recent studies have shown that
statistical analyses of empirical data can be used to dstgh agent typologies, as well as
specific behavior with respect to land use for each agentpgoodypology. In this chapter,
the statistical methods for the derivation of agent grougwell as the range of explanatory
livelihood indicators and the corresponding results aes@nted.
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4.3.1 Identification of livelihood groups
Livelihood indicators
We applied the concept of the livelihood framework for sefegcriteria that represent the
livelihood structure and strategy of farming householdse Tivelihood framework is a con-
cept which divides a household’s resources into fiéedent categories, called household
assets. These comprise human, social, financial, natudaplysical capital (Ashley and
Carney, 1999; Bebbington, 1999; Campbell et al., 2001).répmresenting livelihood groups
in a reliable way, indicators within each of these categomeeded to be selected. The notable
advantage of this diversified selection of indicators ig,thg doing so, biased selections of
grouping criteria are avoided (Campbell et al., 2001).

Based on this approach, the understanding of livelihogukdises in the study area
(see section 4.2) and available studies of livelihood iatdics of Ghanaian households (see
Ghana Statistical Service, 2000; Ashong and Smith, 200dg,¥2000), the following vari-
ables (see Table 4.1) were selected to represent the olezliiood typology of a farming
household:

1. Three variables indicating the household’s human ressur household size, labor
availability, and dependency ratio

2. Two variables representing the household’s financiaitalagotal gross income and
total gross income per capita

3. Three variables describing natural capital: cultivaaeel in the rainy season, total
holdings, and total holdings per capita

4. Two variables representing physical and social cagitastock index and number of
cattle.

Apart from the above indicators, the percentages of incaorm the monoculture
of groundnuts, the mixed culture based on groundnuts, antgpoand farming were in-
cluded in the statistical analysis, as they directly intidhe livelihood strategy regarding
land use. Field observations and statistical analysisestgbat these incomesfidir signifi-
cantly among households withftérent livelihood backgrounds. This way, households with
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a higher tendency to practice subsistence farming usuadlysf rather on compound farm-
ing, as this land-use type provides the basic staples forehconsumption. On the other
hand, households with a tendency towards market-basedigiane more inclined to culti-

vate groundnuts for sale, especially in monocultures.

Statistical analyses

Based on the above selected livelihood indicators, twassitzdl methods were employed
for the identification of agent groups, i.e. Principle Comeot Analysis (PCA) and k-mean
Cluster Analysis (k-CA). PCA is a statistical method to cense a set of variables into a
smaller set, while k-CA is a method to derive clusters of sg#® our case agent groups).
We conducted PCA using all livelihood indicators (Table)4alidentify important indicators
that diferentiate household livelihood typologies. SubsequektyA was applied to these

condensed variables and used to identify typical housdivelithood typologies.

Principle component analysis

Since the dimension of the selected set of livelihood indisawas too large for further anal-
ysis, we used the method of PCA to reduce the dimension of/#riable set. This method
condenses those variables that highly correlate with et to one Principle Component,
with the aim of minimizing the loss of information induced thys condensation. The Princi-
ple Component®C; derived in such a way can be formally expressed as linear c@tibns
of the standardized original variables:

PCj = ) by - X (4.1)
j

whereX; are the standardized original variables, and the loadijgse codficients calcu-
lated by SPSS. The values of the fiagents are determined in such a way that the Principle
Components correlate with each other at a lowest level plessihe aim of the PCA is there-
fore to detect components which best represent the obseobeulences between the original
variables.

We ran PCA with Varimax rotation and the Kaiser normalizatiand the scores

of extracted Principle Components were saved and starzgakdBased on the values of the
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Table 4.1: Livelihood indicators for categorizing farmiagents

Variable Definition

Hgize Size of household (number of household members)

Habor Availability of household labor (number of workers)

Hdepend Dependency Ratio (lhor/ Hsize

Hgross inc Gross annual household income (local currency)

Hgross inc percap Gross annual household income per capita (local currency)

Hholdings Total area of holdings (the land owned by the househwi)i)(

Hholdings percap Total area of holdings per capitar)

Heult rainy Total area cultivated in the rainy seasaonf)

Hiivestock Livestock Index

Hcattle Cattle number owned by the household

Hot inc Iu 2 Percentage of income from the cultivation of monoculturfes o
groundnuts (land-use type 2) of gross income of rainy-seaso
cultivation

Hot inc 1u 3 Percentage of income from the cultivation of compound fagni
(land-use type 3) of gross income of rainy-season cultvati

Hosinclu 6 Percentage of income from the cultivation of mixed grourtdnu
cultures (land-use type 6) of gross income of rainy-season
cultivation

weight parameters;;, we finally named the Principle Components after thosealhvariables
that had the highest correlation to the components (TaBle 4.

K-mean cluster analysis

To derive agent groups, we used the standardized scores Bfithciple Components to run
k-mean Cluster Analysis. The k-means algorithm is an allgorito cluster objects based on
selected attributes into k partitions, while the objectsé partition should feature similar
variable characteristics, and those dfelient partitions dissimilar ones. Mathematically, the
objective of this algorithm is to achieve the minimizatiohtotal intra-cluster variance V,
expressed as:

k
V=)D, (- m)’ (42)

i=1 xj€S;

whereS;,i = 1,...,k are thek clusters (in our case agent groups), iies S; the elements
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of each cluster (in our case household agents), and; thee the centroids or means of each
cluster. Each of the; andy; has as many dimensions as the data set, i.e. one dimension for
each variable. Thusx( — w)? can be regarded as the distance of the agetu the group
centroidy;.

The main advantages of this algorithm are its simplicity apeled, which allows it
to be run on large data sets. On the other hand, its major a@nib that it does not yield the
same result with each run, since the resulting clustersrikpa the initial random assign-
ments (Buhl and Zo6fel, 2000). But due to the relatively ladigéa set, and the fact that each

run resulted in the same classification, this approach sgéortege appropriate.

Results

The PCA was applied to the selected variables charactgrizielihood patterns (Table 4.1)
and resulted in 7 Principle Components. The total variaxggaged amounted to 95 %
(Table 4.2), which is quite high, meaning that only 5 % of thioimation was lost by the
replacement of the original variables through Principlenponents. In Table 4.3, the Ro-
tated Component Matrix is presented, showing the weiglamaters bij among the Principle
Components and the original variables characterizinditived typologies, whereby values
below 0.1 were omitted for a better overview.

The first Principle Component is strongly related to thealkalgs of labor availabil-
ity (by; = 0.953) and household sizkj(= 0.929), and is therefore named the ’labor factor’,
which accounts for 25.6 % of the total variance explained.af porrelation among these
two variables showed that they are highly correlated (PeesR = 0.885, p< 0.001). The
second Principle Component shows high correlations todted area of the owned by the
householdlf; = 0.896), the total area owned by the household per capjte: (0.840), and
the area cultivated in the rainy season (weight parame@ev755). Thus, this Principle Com-
ponent was labeled the ’land factor’, accounting for 15.1f%he total variance explained.
Pair correlations among these three variables were alifgignt (p < 0.001), with the Pear-
son’s R coéficients between 0.396 and 0.631.

For the third Principle Component, the livestock index dreiniumber of cattle were
significant, showing weight parameters of 0.979 and 0.®&pectively; thus, this component
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Table 4.2: Total variance explained

Extraction Sums of Rotation Sums of
Initial Eigenvalues Squared Loadings Squared Loadings
% of Cumu- % of  Cumu- % of  Cumu-

Components Total Variance lative% Total Variance lative %otal Variance lative %

1 3.331 25.621 25.621 3.331 25.621 25.621 2.244 17.261 17.26
2 1.980 15.231  40.852 1.980 15.231 40.852 2.118 18.291 323.55
3 1.850 14.233 55.085 1.850 14.233 55.085 1.956 15.046  88.59
4 1.710 13.154 68.239 1.710 13.154 68.239 1.826 14.045 B82.64
5 1.302 10.018  78.257 1.302 10.018 78.257 1.651 12.700 75.34
6 1.090 8.386 86.643 1.090 8.386  86.643 1.304 10.033  85.377
7 1.005 7.731 94.374 1.005 7.73194.374 1.170 8.997 94.374
8 0.363 2.792  97.166

9 0.140 1.077  98.243

10 0.095 0.733  98.976

11 0.059 0.455  99.432

12 0.055 0.420 99.851

13 0.019 0.149  100.00

was named the ’livestock factor’. This factor accounted ¥dr2 % of the total variance
explained, and a pair correlation among the two represgnaniables showed that they are
highly correlated (Pearson’'sR0.976, p< 0.001).

The fourth Principle Component is represented by the groaséhold incomelx;
= 0.947) and the gross household income per caita=0.931). Thus, we called this
Principle Component the 'income factor’, which accounted3.2 % of the total variance
explained. Here, we again executed a crosstab analysidtingsn a Pearson’s R of 0.796
(p <0.001).

The two opposing variables of the 'percentage income fromaualture of ground-
nuts’ and the 'percentage income from mixed culture basedronndnuts’ resulted in the
fifth Principle component, called the 'groundnut factor’heéBe two variables exclude each
other, because the households will either tend to use a noixidare or a monoculture of (-
0.831 and 0.960, respectively) and their Pearson’s R oBD(p < 0.001). The groundnut
factor accounts for 10.0 % of the total variance explained.

The last two Principle Components are represented by ordyariable each, the

percentage income from compound mixed farming £ - 0.979), and the dependency ratio
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Table 4.3: Rotated component matrix

Principle Components

1- 2- 3- 4- 5- 6 - 7 -
Labor Land Live- Income  Ground- Cereal Depen-
Factor Factor stock Factor nut Mixed dency
Factor Factor Factor Factor
Variables (25.6 %) (15.2%) (14.2%) (13.2%) (10.0%) (8.4 %)7.7(@%0)
Hiabor 0.953 0.127 0.211
Hsize 0.929 0.125 0.193 -0.217
Hholdings 0.251  0.896 0.110
Hholdings percap - 0-385 0.840 0.251
Heult rainy 0.325 0.755 0.157 0.175 -0.130
Hiivestock 0.133 0.979
Hcattle 0.148 0.978
Hgross inc percap - 0.240 0.947
Hgross inc 0.258 0.931 -0.115
Hos inc 1u 2 0.960  0.193
Hog inc Iu 6 -0.831  0.528
Hos inc lu 3 -0.131 -0.979
Hdepend 0.992

Notes: Numbers in parentheses are percentages of totahgarof the original variable set explained
by the principle components.

(bjj = 0.992). Here, the Principle Components are named after dhniginal variables, the
'compound mixed factor’, and the 'dependency ratio factexplaining 8.4 and 7.7 % of the
total variance respectively.

On these 7 Principle Components, the k-mean Cluster Arsalysis applied to
derive clusters representing the specific livelihood aggatips. The disadvantage of this
method is that the number k of clusters has to be set befodeansolve this problem, the
k-mean Cluster Analysis was run fer= 1,...,11, and for each run the distances of each
household to the cluster centers were calculated. One holagsbad to be omitted, as for
each k this household formed a single group, which was cersildas an outlier. The target
was then to select the value for k that met the following twoditons: First, a low average
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distance to the cluster centers, and second, reasonalterctizes, which should be large
enough to ensure statistical validity for further applicas. To analyze the first condition,
the cluster number k was plotted against the average destanthe cluster centers (Figure
4.4).

As visualized, the average distance to the cluster censergdses untit = 3, then
slightly increases, and finally decreases again fkom5 upwards. Therefore, the values of
k = 3 andk > 5 had to be considered as cluster numbers. But further asallgewed that
the second condition of reasonable cluster sizes was naamyetore for values above 5. We
therefore decided to skt= 3 for this study. Descriptive statistics then were used &ckhf
the three clusters were meaningful (Table 4.4).

The k-CA run fork = 3 on the standardized scores of the Principle Components
resulted in three agent groups of sizes 111, 77 and 11. Ire®Ml for each agent group
descriptive statistics of those variables are shown thsttie@resented the Principle Compo-
nents (with the highest weight parameters). In the foll@yendescription of the characteris-

tics of each household type is given:

Household type 1
The most conspicuous characteristic of this category aiéas is the high availability of land,
ranging from 4.500 to 223.80€ with a mean of 31.508¥. The second characteristic is the
high diversity of land-use types cultivated by the housdoln Figure 4.5, the percentages of
the gross income from each land-use type of the total grassne of rainy-season cultivation
are displayed for each farmer group. Remarkable is therdnce between the three groups
in the percentage of groundnut monocultures. Among farfnens the first household type,
about 34.2 % of the total cultivated area is covered by grautslmonocultures, whereas
the percentages for the second and the third household tgpard only to 1.6 and 3.2 %,
respectively.

Apart from the relatively high land availability, the firstayp can be regarded as
the 'middle class’ of farmers, with a medium livestock in@ed a medium dependency ratio.

Likewise, regarding the practice of dry-season farming, tlousehold type can be
considered as the 'medium’ class in comparison to the réispe@lues of the other types,
with more than 51.9 % of the farmers practicing dry-seasomifag. In total, this group of
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Figure 4.4. Average distances to cluster centers for k efast

'middle class’ farmers constitutes about 38.7 % of the paitah.

Household type 2

This class of farmers can be considered as the poorest ajdnold types, with the lowest
labor availability (3.724 persons per household), the Kiveanount of total land holdings
(18.395mP), income per capita (2.1 million Cedis), and the lowestdteek index. The sub-
sistence level is the highest for this group, with an annusdmncash income of 4.9 million
Cedis, compared to 9.5 and 31.5 million Cedis for the houskigpes 1 and 3, respectively.
The income proportion from mixed groundnuts and compounaiifeg is dominant within
this group, while the proportion of rice - which is considgie cash crop - is the lowest of
all groups, suggesting that the level of subsistence fagrisrhighest for this group. The
fraction of households practicing dry-season farmingss aluite low at 35.1 % (Figure 4.6);
the majority use bucket irrigation, which is the lower-cogérine irrigation method. In total,
this household group of 'poor farmers’ makes up 55.8 % of thyauation.

Household type 3

Households of this group are richer than others in termsvebtock and income per capita;
income ranges from 3 to 15 million Cedis per person. The ogimprof land for this group
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Table 4.4: Descriptive livelihood statistics

Agent Std.
Variables Group N Mean Std.Error Minimum Maximum Deviation
Hiabor 1 77 7.006 0.346 2 16.0 3.041
2 111 3.734 0.117 1 7.0 1.242
3 11 6.090 0.709 3 9.5 2.353
Hholdings 1 77 31463 3380 4537 223800 29659
2 111 18395 1134 1205 64078 11949
3 11 23100 4409 4820 45042 14625
Hiivestock 1 77 6872 711 368 34407 6235
2 111 5052 690 0 56336 7267
3 11 7441 1446 2270 16313 4795
ngoss inc percap 1 77 2165184 163638 239800 8152254 1435919
2 111 2127251 120611 93218 6517703 1270717
3 11 6921292 1161211 3031187 15714007 38513021
Hog inc lu 2 1 77 0.342 0.037 0 0.912 0.328
2 111 0.016 0.007 0 0.585 0.077
3 11 0.032 0.032 0 0.353 0.106
Hot inclu 3 1 77 0.178 0.016 0.000 1.000 0.147
2 111 0.281 0.025 0.000 1.000 0.272
3 11 0.232 0.069 0.047 0.842 0.230
2 111 0.683 0.017 0.321 1.0 0.185
3 11 0.705 0.046 0.444 0.9 0.154

is medium at about 23.10€° per household. The pattern of gross income from rainy-seaso
cultivation shows that households of this group focus onadhi@vation of rice, with the
proportion of rice being the highest among all groups (Fégub). For this group, the average
income from the sale of rice per household amounts to ab@un8lion Cedis, compared to
only 1.2 and 0.6 million Cedis for groups 1 and 2, respecgtiwvehich indicates that rice is
considered as a cash crop among farmers of this group. Titieefundicates that the land-
use composition of this household type is more directed tdsvéne cultivation of cash crops
than subsistence crops. Furthermore, with 81.6 % of alléasnthis group is highly involved
in dry-season farming, with 27.3 % practicing pump irrigatiwhich is the most costly local
irrigation method (Figure 4.6). In total, this group of 'bataf farmers’ amounts to 5.5 % of
the whole population.
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4.3.2 Agent Categorizer

The Agent Categorizer is a classifier routine (built into GHPAS) to assign agents to
their most similar group based on the identified groupinteda (section 4.3.1). The most
straightforward approach for classifying agents duringoaleh run is to calculate 'distances’
from each agent to each group, and assign the agent to thp githuthe smallest distance.
There are a number of methods that can be employed to cacuieh distances, including the
Euclidian distance, which can be used to measure the destaetaeen the agent’s values and
the mean values (of grouping criteria) of each agent groepet@l methods for calculating
distances were tested in a separate model, whereby theitrafmgroach showed the best
results, with 100 % of correct predictions. Using multinahtdgistic regression, the distance
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of an agenfA to agent grou is calculated as:

e¥gt2iBigVi

Disty = —Zh oS Y

(4.3)
whereDisty is the distance value of ageAtto groupg, V; the values of the grouping cri-
teria (see section 4.3.1) of ageAt anday andgy the constant and preference floments

of the grouping criteria for groug. The values for the constant as well as the preference
codficients were calculated using SPSS (Table 4.5), wherebyefleeence category is the
third agent group. All groups as categorized by the k-mearst€r Analysis were correctly
predicted, justifying the use of this model for classifioati

4.4 Modeling land-use decisions

Based on the identified livelihood groups, the main target t@adevelop decision-making
sub-models regarding the choices among land-use typeshardktisions related to irriga-
tion farming. However, the relatively small sample sizerafation farmers did not allow a
group-wise approach for modeling the dry-season-relageisibns, i.e. the decision to use
irrigation and the choice of irrigation method. Insteads fireference cdicients for the
m-logit models of these choices were not determined for gachp separately, but for the
total population. This way, unreliable results due to srsathple sizes were avoided. In the
following, we will describe the models of the choices amaoaigy- and dry-season land-use
types, and the models describing the decision to do iregatind the choice of irrigation
method.

4.4.1 Modeling choices among land-use types

In this section, the models for choices among land-use tgpegresented, including the
methodology, the specification of the range of explanatanables, and the subsequent re-
sults. For the choice among rainy-season land-use types-lagit model was employed,
with group-specific preference dtieients. However, regarding the choice among dry-season
land-use types, a simpler approach needed to be applieds¢hef which will be justified in

the respective section.
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Table 4.5: Parameter estimates of the m-logit model of thenrAG@ategorizer
Preference Cdgcients

Variables Group 1 Group 2
Constant - 37.237*** 128.723***
Hiabor -13.604**  -26.741*
Hdepend 134.921* 103.340**
Hsize 11.840* 3.735***
Hholdings 0.002 0.000
Hholdings percap - 0.012* -0.003
chlt rainy 0.000*** 0.001**
Hiivestock 0.000** 0.002*
Heattle 2.467 0.167
Hgrossinc 0.000** 0.000***
Hgross inc percap 0.000** 0.000**
Hosinclu 2 92.745* - 75.260*
Hog inc 1u 3 - 80.803**  -48.178***
Hoginclu 6 - 34.075* 12.853**

Model Fitting Information

Chi-Square= 341.411, dt= 26, Sig.= 0.000

Pseudo R Square . .

Cox and Snelk 0.995, Nagelkerke- 1.000, Mc Fadders: 1.000

Specification of the variables for the m-logit model for the ainy season

Dependent variable

The dependent variable of the model is the choice of landyseby a household in the rainy

season. This categorical variable of land-use types ca@p6 land-use alternatives: mono-
culture of cereals, monoculture of groundnuts, mixed camplcsystem, rice-based culture,
soybeaypotatoes, and mixed culture based on groundnuts (seersdc?ial).

Explanatory variables

For the adequate modeling of land-use choice, all factdasa@ to local household decision-
making should be taken into consideration. This includesethvironmental setting of the

household plots, the socio-economic state, and the laagreferences of the household
(Table 4.6). The selection process of the range of variakisn these three categories con-
sisted of both intensive farmer group discussions and tpersision of the 'goodness-of-fit’
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(R Square) of the m-logit model for the given variables.

Table 4.6: Range of variables for the m-logit model of raggason land-use choice
Variable Definition Data Source

Dependent Variable

Pland-use rainy Coded rainy-season land-use type Interview and
field observa-
tion

Characteristics of the plot user

Hage Age of the household head (in years) Interview

Hwives Number of wives of the household head (if thénterview

household head is male)

Hdepend Dependency ratio (number of dependahtstal Interview

household members)

Hhids percap Total area owned by the household per capita Interview and
field measure-
ments

Hgender Sex of the household head Interview

Hcomp head Compound head status (1 if compound head, |6terview

otherwise)
Hos 1u 2 rainy Percentage of cultivated area of Monoculture dhterview
Groundnuts (land-use 2)

Hos 1u 3 rainy Percentage of cultivated area of Mixed Cominterview
pound Farming (land-use 3)

Hos 1u 6 rainy Percentage of cultivated area of Mixed Culture dhterview

Groundnuts (land-use 6)

Environmental attributes of land plots

Pupslope Upslope contributing area GIS-based
(DEM)

Ptexture Soil texture (ranking scale) Map-based cal-
culation

Prertility Soil fertility (ranking scale) Map-based cal-
culation

Pirr coeff Irrigation Codficient indicating the level of irri- Calculation

gability (between 0 and 1)

Pdist user Distance of the plot to the land user (km) Field measure-
ment

Pdist border Distance of the plot to the national border (km)  Field measur
ment
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i) Environmental Variables

As our aim is to explicitly simulate the land-use decisiohfooal farmers, we have to un-
derstand the factors that play a role within these decisiéwxording to local interviews,
the abundance and type of grass on a piece of land is an impanticator for the farmer
whether and for which crops the soil is appropriate. Furtitee, according to traditional
knowledge, soil color, texture and moisture are furtherdatbrs for the decision among the
various land-use types. For instance, a grey surface anddy saft soil are considered to
be suitable for the cultivation of groundnuts, whereas @éasils are more suitable for mil-
let. Soil moisture should be high for rice cultivation, maui for cereals such as millet, and
lowest for groundnuts.

Biophysical variables were selected to represent theg@vater conditions, which
are hypothesized to be of varying importance for théedent land-use types. These include
soil fertility, representing the abundance of grass, ypsloontributing area, irrigation co-
efficient, and soil texture. While the upslope contributingaaapproximates rather the soil
moisture content caused by topography, the irrigatiorffament represents the geological
component of soil moisture including factors such as grewatdr level and recharge. Among
topographic factors, upslope contributing area was safiesince this variable describes the
relative position of a land patch, being higher for vallegd sower for mounds. This éier-
entiation is important, as rice is preferably cultivateddoal valleys, which serve as staging
areas for runfi. This way, this factor can be assumed to play a role in thetiiieation of
rice plots, as the local position of the piece of land is pathe farmer’s considerations. Soil
texture also can be considered as an indicator of land-usestas the local soils suitable for
the various local crops fier in the topsoil composition of particle sizes. For examjaleal
farmers tend to cultivate groundnuts preferably on soilh\ailarger mean topsoil particle
size, in contrast to other local staples.

Apart from such biophysical attributes, factors of spa@iessibility were hypoth-
esized to influence land-use choice, including the distaficke plot to the compound and
the distance to the national border. The distance to the oanmgpis minimal for the land-use
type of mixed compound farming, as this land-use type is ywacated in the immediate
vicinity of the compound building. The reason is that mixeshpound farming requires
high inputs of animal manure, which can only be transfernegt gshort distances. Land-use
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types based on groundnuts are usually located further awwaythe compound, as ground-
nuts need less attention in terms of labor and managememthAnfactor determining the
choice of crops on distant plots is that certain crops nedxtprotected from livestock and
birds. Local crops such as maize and cowpeas are prefenalbilyated on distant plots, since
their seeds not eaten by birds and therefore need less fiootedpart from the distance to
the compound, the factor of distance to the national borger wcluded in the analysis, as
we noticed a spatial gradual shift in land-use patternsgalba south-north axis. Thisfter-
ence in land-use patterns was characterized by a highéopoftcereal-based farming in the
north together with a higher poverty level, indicating ttie degree of subsistence farming -
which is mainly based on cereal cultivation - was higher ugmarhis north-south gradient
is, according to our field observations, caused by the remagteof the northern part in terms
of infrastructure (e.g. markets, roads), which can be éxpthby the close distance to the

border, and by a lack of irrigation possibilities.

i) Variables of household characteristics
The household characteristics deemed significant for lesedehoice are age and gender
of the household head, number of wives (if the household lneadale), compound head
status, dependency ratio, and total land holdings peraajpithe study area, a gradual shift
among land-use types from traditional cereal farming tathigvation of rice and groundnuts
was observed during the last decades. One of the main refmaihss is that the younger
generations tend to prefer cash crops such as rice and grotgn traditional crops; this is
supported by the empirical data set, which shows a much hpggreentage of such cash crops
among younger farmers. To reflect this variation in landqusferences, we hypothesized
the age of the household head to be an explanatory variablenfd-use choice. In a similar
vein, just as there are fiérences among young and old farmers, there is alséfereince
when it comes to the gender of the household head. Femalerfaumsually tend to focus on
the cultivation of groundnuts, since these are less latensive, whereas the typical domain
of male farmers is cereal farming, which requires hard worknhaintenance and weeding.
Therefore, we also included the gender of the household asadhypothetical factor for
land-use choice.

The dependency ratio and the number of wives of the housdtezld both reflect

126



Land-use decisions by heterogeneous household agents

Table 4.7: Assumedects of drivers on land-use choice
Variable Assumedfeects on land-use choice
Sign  Land-use typgcrop type

Hage () Cash Crops

Hwives (+)  Groundnuts

Hdepend (+) Mixed Cultures

Hholdings percap 1000 (-)  Cereals

Hgender () Groundnuts

Hcomp head (+/-) —-

Hos lu 2 rainy (+) Monoculture of Groundnuts
Hos Iu 3 rainy (+) Mixed Compound Farming
Hos Iu 6 rainy (+) Mixed Groundnut Culture
Pupslope’ million (+) Rice

Ptexture ()  Groundnuts

Prertility () Groundnuts

Pirr coeft (+/-) —

Pdist user () Mixed Compound Farming
Pdist border () Cereals

the needs of the household regarding its diet. The depepdatio reflects the number of
mouths each worker feeds, thus relating to the urgency id ttl@mands of the household
(Fatoux et al., 2002). Households with a high dependenay cauld be forced to grow a
larger variety of crops, since most of these would be usetidare consumption. Therefore,
a high dependency ratio is assumed to be an indicator forréference of mixed cultures
(e.g. mixed compound system, mixed groundnut culture). Atumber of wives is a similar
factor explaining the urgency in food demands, but with tiglsdifference that each woman
usually holds her own groundnut plots to feed her own famégulting in a tendency towards
groundnut cultivation.

Finally, the variable of land holdings per capita was hypsthed to be higher for
the land-use types of groundnuts, since groundnuts areaslypplementary staple of the
local menu. Therefore, farmers with little land might tenddcus on the main staples such

as millet and Guinea corn.
iif) Land-use tendency of the household

We also have to consider that local farmers usually do noenaakew land-use decision ev-
ery year, but are rather inclined to maintain continuity aglg on their previous decisions.
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Since such continuity cannot be reflected by the variablesegtwe decided to include fac-
tors explaining the general land-use tendency of the haldeThis land-use tendency is
represented by the fractions of the land-use types of tmg+s@ason cultivation area from
the previous year. Through the inclusion of these variabté®nly is the continuity in land-
use decisions ensured, but also the possibility of a grathaige in these decisions, as the
land-use tendencies are allowed to change over time in GBA&I Among these land-use
fractions of the total cultivated area, we selected the m@stningful variables with respect
to their diference among agent groups, including monoculture of gnoutsgd mixed com-
pound farming, and mixed culture of groundnuts.

Results of m-logit model of land-use choice for the rainy seson

Based on these indicators, we applied an m-logit regredsiotine choice among land-use
types for each household group separately. This resultgdoump-specific preference coef-
ficients, reflecting the overall land-use tendency of eag#ihood group. In the following,
we present the results as well as the goodness-of-fit for theginmodels (for each agent
group), and discuss the importance of selected signifieauat-Use drivers.

Household Type 1

The results of the m-logit analysis of rainy-season lanelei®wice for household type 1 are
summarized in Tables 4.8 and 4.9. The preferencéicants were calculated with respect
to the land-use type mixed groundnut culture, which sergetha base case. The choice of
the base case did not have any influence on the calculatezr@net cofficients.

The chi-square test shows that the empirical m-logit moélédmd-use choice for
this agent group is highly significant with# 0.000. The Nagelkerke’s Pseudo R Square
of 0.541 shows that 54.1 % of the total variation in the prdlitstof land-use choice is ex-
plained by the selected explanatory variables. Furtheznfor this agent group, 50.8 % of
the choices among land-use types are correctly predicted.

Household Type 2

Using the same range of variables, an m-logit regressioralgasconducted for the second
household group (Tables 4.10 and 4.11). The likelihood ri&st showed that the empirical
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Table 4.8: Group 1: Rainy-season land-use choice: paramestienates

Rainy-Season Land-Use Type

Mono- Mono- Mixed Rice .

culture of culture of Compound based Soyhean
Variable Cereals Groundnuts  Farming Culture Potatoes
Intercept -21.181**  7.808** -0.486 - 22.465*** - 16.297*
Hage 0.000 -0.003 0.006 -0.032 -0.016
Hwives -0.392 -0.437 -0.089 -0.122 -0.738
Hdepend -0.988 -2.210 0.002 0.544 2.028
Hhids percag 1000 -0.011 -0.003 0.022 0.091 -0.088
Hgender 25.067 -5.044** 0.941 23.298 16.528
Hcomp head 0.037 -0.391 -0.064 -0.352 -0.481
Hog 1u 2 rainy -2.475 1.108 0.655 -1.159 2.222
Hos 1u 3 rainy -2.144 -0.316 0.974 -0.631 -0.220
Hos 1u 6 rainy -4.647%* -6.037**  -3.711***  -2.878 -2.069
Pupslope/ million 0.008 0.039 -0.023 0.022 0.005
Piexture -0.136* -0.045 0.051 -0.207** -0.198
Prertility 0.208 0.229 -0.004 0.579 0.267
Pirr coef 3.814* -0.713 3.697 2.630 -3.073
Pdist user 0.401 -0.381 - 1.900*** 0.422 -0.458
Pdist border -0.043 0.074 -0.029 0.080 0.056

Model Fitting Information Chi-Square= 194.017, df= 75, Sig.= 0.000
Pseudo R Square Cox and Snelk 0.520, Nagelkerke- 0.541, Mc Faddes 0.225

The reference category is: Mixed Groundnut Culture

Table 4.9: Group 1: Rainy-season land-use choice: classdictable

Predicted

Mono- Mono- Mixed Rice Mixed

culture of culture of Compound based SoyhearGroundnut Percent
Observed Cereals Groundnuts Farming  Culture Potatoes uréult Correct
Monoculture
of Cereals 20 2 7 8 0 4 48.8%
Monoculture
of Groundnuts 6 19 12 3 0 5 42.2 %
Mixed Compound
Farming 3 10 45 1 0 14 61.6 %
Rice based
Culture 7 6 6 8 0 5 25.0%
Soybean
Potatoes 3 1 0 0 2 0%
Mixed Groundnut
Culture 3 5 16 1 0 42 62.7 %
Overall Percentage 14.8% 17.0% 33.0% 8.0 % 0% 27.3% 50.8 %
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choice model is highly significant with # 0.000. The test for the goodness-of-fit showed
that the model has an acceptably good fit, with a NagelkefRe&udo R Square of 0.600.
The model also has a satisfactory predictive power, as 65d e choices are correctly
predicted.

Household Type 3

Because of the relatively small size of this agent group, divthe six land-use types were
not found among this group, i.e. groundnut monoculturessaytheaypotatoes. Out of the
cases representing the remaining four land-use types 79ar&correctly predicted (Table
4.13).

Specification of land-use choice algorithm for the dry seaso
Two different dry-season land-use types were identified in the sively, namely tomato
monocultures and mixed cultures based on tomatoes (set®cf). The mixed tomato cul-
tures consist on average of more than 90 % of tomatoes, wiyhsomall amounts of pepper,
onions and leafy vegetables, which are mostly meant for hmmesumption. The decision to
add such small amounts of vegetables depends on the petasteadf the farming household
head, and is thus fficult to simulate. However, there are smalffeiences in dry-season
land-use choice among younger and older farmers, as wethaag@households with a low
and a high dependency ratio. An m-logit model for land-usaicghwas tested with GH-
LUDAS, incorporating variables such as age, number of widependency ratio, as well
as environmental variables, since pepper, which is the m@sialent crop after tomatoes,
prefers diferent soil and moisture conditions. Nonetheless, this ioat® a low predictive
power with low R Squares, which might be due to two reasonst,khe data set comprising
the two land-use types was relatively small, with only 40tplaf tomato monocultures and
15 plots of mixed cultures. Second, as already mentionedeatibe decision to add such
small amounts of vegetables isfftbult to model, as it is dependent on the personal taste
of the household head and his family. For these reasons arldwhpredictive power of the
tested m-logit model, we found that the use of such a modeldvmat lead to reliable results,
and decided to use a simpler, more robust approach.

This approach consists of the use of the mean percentagestobéthe two land-
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Table 4.10: Group 2: Rainy-season land-use choice: paesirestimates

Rainy-Season Land-Use Type

Mono- Mono- Mixed Rice .

culture of culture of  Compound based Soyhean
Variable Cereals Groundnuts Farming Culture  Potatoes
Intercept 0.251 -94.384 1.909 0.225 -489.287
Hage -0.007 2.820 0.013 -0.017 0.122
Hwives 0.145 -37.281 -0.193 - 0.602 0.746
Hdepend 2.239 -185.068 -0.327 0.938 -0.438
Hhids percag 1000 -0.052 0.304 -0.066 -0.087 0.410
Hgender -0.212 425.204 -0.009 0.298 15.274
Hcomp head -0.142 -68.955*  -0.453 0.730 -0.097
Hos u 2 rainy 2.018 434.822* 0.626 1.017 -87.211
Hos 1u 3 rainy -1.101 -309.814 1.289* -0.135 -12.812
Hos 1u 6 rainy -2.889*  -169.786 -1.505* -2.815* -8.122
Pupslope/ million 0.058 -126.312 0.630 1.048* 3.662
Piexture -0.101 -7.829 -0.062 -0.132* 22.800
Prertility -0.148 -98.251 0.062 0.140 20.762
Pirr coef 5.684* -2785.279* 2.418 4.860** -146.270
Pdist user 0.589 47.659** -6.068***  0.339 -1.815
Pdist border -0.012 34.547* -0.047 0.075 -0.046

Model Fitting Information Chi-Square= 275.030, df= 75, Sig.= 0.000
Pseudo R Square Cox and Snelk 0.559, Nagelkerke- 0.600, Mc Faddes 0.305

The reference category is: Mixed Groundnut Culture

Table 4.11: Group 2: Rainy-season land-use choice: clessdn table

Predicted

Mono- Mono- Mixed Rice Mixed

culture of culture of Compound based SoyhearGroundnut Percent
Observed Cereals Groundnuts Farming  Culture Potatoes uréult Correct
Monoculture
of Cereals 8 0 4 7 0 11 26.7%
Monoculture
of Groundnuts 0 4 1 0 0 0 80.0%
Mixed Compound
Farming 0 0 93 1 0 20 81.6 %
Rice based
Culture 4 1 8 19 0 19 37.3%
Soybean
Potatoes 0 0 1 0 1 1 33.3%
Mixed Groundnut
Culture 3 0 31 4 0 95 71.4%
Overall Percentage 4.5% 1.5% 41.2% 9.2% 0.3% 43.5% 65.5 %
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Table 4.12: Group 3: Rainy-season land-use choice: paesirestimates
Rainy-Season Land-Use Type

Mono- Mixed Rice

culture of Compound based
Variable Cereals Farming Culture
Intercept -44063 - 48838 - 29985
Hage -1344 - 1595 - 1070
Hwives 1390 1560 1052
Hdepend 120467 142716 95436
Hhids percag 1000 -114 -110 -79
Hcomp head -6119 -7114 - 4798
Hoo lu 3 rainy 90 178* 43
Hos 1u 6 rainy - 35638 - 41595 - 27489
Pupslope(million) - 106 - 209 -139
Prexture 1138 1261 777
Prertility 3689 3712 2010
Pirr coef 22740** 25599 15542
Pdist user -175 - 348+ - 145
Pdist border -83 -8 51
Model Fitting Information Chi-Square= 124.090, df= 39, Sig.= 0.000

Pseudo R Square Cox and Snelk 0.676, Nagelkerke- 0.714, Mc Faddegr: 0.702
The reference category is: Mixed Groundnut Culture

Table 4.13: Group 3: Rainy-season land-use choice: cleasdn table

Predicted

Mono- Mixed Rice Mixed

culture of Compound based Groundnut Percent
Observed Cereals Farming Culture Culture Correct
Monoculture
of Cereals 1 0 0 0 100.0 %
Mixed Compound
Farming 0 9 0 2 81.8%
Rice based
Culture 0 1 3 0 75.0%
Mixed Groundnut
Culture 1 2 0 10 76.9%
Overall Percentage 6.9 % 41.4% 10.3% 41.4% 79.3%

use types for each agent group. Each agent is assigned thepaszntages of the two
land-use types according to the agent group he belongsetothe agent’s choice among
the two land-use types is determined by the correspondiolgatilities of his agent group.

Thus, the tendency to cultivate mixed cultures is not giverhe individual agent, but is
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represented by the average tendency of the group memberthefmore, as agent groups
are dynamic such that an agent possibly changes his grougioe this tendency is also

allowed to change during time. The mean percentages of egertt group for the cultivation

of monocultures amount to 57 % for the first group, 65 % for theosd, and 61 % for the

third group. The algorithm for choosing a certain land-yg®etcan be depicted as follows
for an agent A:

1. If Ais member of groufs, set the probability to choose mixed cultu?g (which is
the mean percentage of this land-use type.)

2. For a given patch, set land-use type monoculture of toesato

3. Generate a random numbdsetween 0 and 1.

4. If r < Pg , set land-use type mixed culture of tomatoes.

4.4.2 Modeling irrigation-related decisions
Methodology
For modeling irrigation-related decisions, we decidedde a two-fold nested m-logit model.
The first m-logit model will simulate the general decisionaohousehold agent to do dry
season farming, while the second will then simulate theahof irrigation method, if the
decision of doing irrigation in the first step is positived&re 4.7). This two-fold nested
decision is taken by each household agent in each time stéye afiodel run after the rainy-
season simulation procedures, and is independent of thup @fcagents.

In the following, we will describe the variables used foisthested decision-making
model and give reasoning for the selection of these vasalblest, we will introduce the de-
pendent and explanatory variables of the first step of theainod

Specification of the variables of the first step of the m-logimodel
Dependent variable
The dependent variable of this first step of the m-logit masleimply the choice by farming

households between doing irrigation and not doing irr@atiThis variable is represented in
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Decision of
Irrigation Farming

Skip Dry-Season
Cultivation Procedures

Dam Bucket Pump
irrigation irrigation irrigation

Figure 4.7: Decision tree for the nested m-logit model fagation decisions

the model by the dummy variable § qummy Which is 1 if the farmer is engaged in irriga-
tion during this time step, and 0 otherwise.

Explanatory variables
In the study area, field observations and insight from thesbbald surveys showed that most
of the farming household heads who are not engaged in iilwigé&rming are willing to start
it. Furthermore, those who are already involved in this hess, would like to expand, which
is due to the high profitability of this business. Only few kebold heads refused to get
involved in irrigation farming, mostly due to old age or sigss. Thus, this decision of the
household can hardly be regarded as a choice as such, buy meeequestion of capability.
Explanatory variables that are hypothesized to be impbitathe decision for dry-season
farming should therefore reflect the capability of the hdwsde to practice irrigation. To
reflect this overall household capability, we employed ammemic approach, which defines
the involvement in a business as being dependent on theabNayl of the four resources
labor, land, capital and knowledge. However, since manpawabundant in the dry season
due to less farming activity, labor can be easily rentedrfayated cultivation, and is therefore
already represented by the factor financial capital.

The factor land with respect to irrigation implies that tleguired piece of land
should be irrigable. The access to such irrigable land isiddfby local tenure rights, mean-
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Table 4.14: Variables for the first step of the nested m-logitiel for irrigation decisions
Variable Definition Data Source

Dependent Variable

Hdry dummy Dummy variable indicating whether thenterview
farmer is doing irrigation
Independent Variables

Hcash rainy Cash income from the rainy season (iiterview and
Cedis) Calculation
Hneigh dry Percentage of immediate neighbors involvedstimation by
in irrigation farming interviewee
Hhids dry irrigated Area owned by the household (ifrield Mea-
me) surement
Hgist water Distance to water sources (including damdlap-based
and main river) in m Calculation
Hperc NFA Percentage of income from non-farm activinterview and
ties of total annual gross income Calculation
Hinv strat Dummy variable indicating whether thenterview

farmer would invest in irrigation farming

ing that a single household either owns such land or can tigii@w some. Thus, two factors
can be assumed to represent the access to irrigable larsed, th ownership of such land,
and second, if no irrigable land is owned, a factor reflectimgchance of the household to
borrow such land. In the study area, the borrowing of landtesnofacilitated by friendship
and family relations, meaning that land is preferably gednb relatives and friends, who
mostly live in the immediate neighborhood. This way, thendeaof a farmer to obtain such
land decreases with the distance to the irrigated area.efdrer in order to represent the
availability of land resources for irrigation with respéatiand tenure, we decided to include
the irrigated area owned by the household, as well as thandistof the household to water
sources suitable for irrigation, which include both dama #oe main river.

There are three main reasons why financial capital, the sefamtor, is needed:
First, the purchase and application of fertilizer and otttegmicals is almost inevitable for
dry-season cultivation in the study area. Second, the eraantce of two of the irrigation
methods hand dug wells and dugouts requires a large inputapower, which has to be

covered in many cases by rented labor. Third, other expanedit such as the repairs and
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servicing of motor pumps for pump irrigation, as well as igefor bucket irrigation require
financial means. To represent this financial factor, we derit use the variable of cash
income of the household from the rainy season. We suppose&dsh income is a better
indicator for this decision than gross income, since in noasees, the transactions for the
purchase of inputs and labor are made in cash. The cash incomarises the income from
the sale of agricultural products and animals, as well agit@me from non-farm activities
such as trading, food processing and handicrafts. The ubésofariable also implies that an
appropriate modeling of cash income in each time step of thaefis essential.

The third economic factor, which is hypothesized to be ofonignce when model-
ing the decision to do dry-season farming, is knowledge amkhow. This factor is repre-
sented by the percentage of immediate neighboring houdetwt are involved in irrigation
farming. However, this factor does not exactly reflect th@s$fer mechanisms of knowledge,
which could also be mediated through clans or families adstef neighbors, but is neverthe-
less the most straightforward approach to capture thiscasgeclosely as possible, since the
modeling of social networks was beyond the scope of thisystud

Apart from these economic factors, we included a factoresgmting the timely
fashion in which a farmer manages to start dry-season farnirthe study area, observations
suggest that many farmers first get involved in non-farnviids, because these activities
do not require such large cash inputs as irrigation farmiligenough financial capital is
accumulated from these non-farm activities, many farmieifs t® the irrigation business. In
order to represent this factor, we included the percentdgem-farm activities of the total
gross income (per year) as an explanatory variable in oueinod

Finally, in order to capture the degree of willingness of leeisehold head to en-
gage in irrigation farming, we included a dummy variable {athwas obtained during the
socio-economic survey 2006 - that indicates whether thadamwould invest in irrigation
farming if he had additional income. We call this variable thvestment strategy (K strad-

Results of first step of irrigation m-logit model

Based on the above variables, we calculated the prefereeffecents for the m-logit model

of choice between irrigation farming and no irrigation famm (Table 4.15), with the refer-

ence category being irrigation farming. All selected erplary variables were significant
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at a level of p< 0.01, and the model had a high predictive power, with 85.4 ¥hefcases
correctly predicted, and a Nagelkerke Pseudo R Square 68(QTables 4.15, 4.16 and 4.17).

The values of the calculated preferencefioents (Table 4.15) strongly confirm
the theory of the fects of the selected variables. Thus, the lower the casimeagcthe lower
the probability of getting involved in dry-season farminbhe same is valid for the owned
irrigable/irrigated area, the percentage of neighbors involved igdtion farming, and the
investment strategy, which is 1 if the farmer is wiling to@sv in irrigation, and O otherwise.
The lower all these factors are, the lower the chance of thedato irrigate. On the other
hand, the higher the distance to water sources and the high@ercentage of income from
non-farm activities, the lower is this probability.

Specification of variables of second step of m-logit model

Dependent variable

The dependent variable within the second step is the chdigeigation method once the
farmer decided to irrigate, and is represented by the haldetariable K methog The
methods are bucket irrigation, pump irrigation, and resiefivrigation, if a dam is available.

Explanatory variables
The most significant dierence among the three irrigation methods is thtedince in fi-
nancial requirements. Comparing pump and bucket irrigaggmump irrigation is the more
profitable method, since more land can be put under culbmabut it is also the more costly
one. The maintenance of the dugout on the one hand and fuahdarepairs of the motor
pump on the other usually cause high costs compared to thetunethod, which is usually
less costly to operate. However, both types require higbrlaiput for the maintenance of the
wells and dugouts, for which labor needs to be rented in masgg; thereby increasing the
input costs. Among all irrigation methods, reservoir iatign can be regarded as the cheap-
est method, as the payment for use usually does not exceedstsefor the other methods.
Since farmers are often forced to choose the method theyffad ave included the variable
of cash income from the rainy season to represent the finataidy of the household with
respect to this choice. For the m-logit model, the logaritfrthis variable was selected.
Furthermore, we included three more variables in the m:logidel of choice of
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Table 4.15: First step of the nested irrigation decision ekggarameter estimates

95 % Confidence
Interval for Exp(B)
Std. Lower Upper
No Irrigation B Error Wald df Sig. Exp(B) Bound Bound
Intercept -0.128 0.663 0.037 1 0.847
Hcash rainy -0.234 0.076 9382 1 0.002 0.791 0.681 0.919
Hinv strat -2259 0841 7223 1 0.007 0.104 0.020 0.542
Hperc NFA 0.059 0.014 17.614 1 0.000 1.061 1.032 1.091
Hneigh dry -3.680 0.798 21.290 1 0.000 0.025 0.005 0.120
Hgist dams 1.186 0.298 15.850 1 0.000 3.275 1.826 5.872
Hhids dry/ 1000 -0.229 0.071 10.444 1 0.001 0.795 0.692 0.914

The reference category is Irrigation

Table 4.16: First step of the nested irrigatiofable 4.17: First step of the nested irrigation

decision model: correct decision model: statistics
predictions
) Model Fitting Pseudo
Predicted Information R Square
No Percent
Observed Irrigation  Irrigation Correct . Cox
— Chi- and Nagel- Mc
No Irrigation 96 15 86.5% Square df Sig. Snell kerke Fadden
irrigation 14 74 84.1%

Overall Percentage 55.3%  44.7% 85.4% 140469 6 0.000 0.506 0.678 0.514

irrigation method, one representing the choice betweenalariverine irrigation, and two
to separate the choice between bucket and pump irrigatiorce Slam irrigation is a rela-
tively low-cost business, the only obstacle for farmersrigage in farming along a dam is
its accessibility. To represent this factor, we include thinimum distance of the farming
household to dams as an explanatory variable in the modelthEachoice among the two
riverine irrigation methods, we selected two variables,the number of years the household
has been engaged in irrigation farming, and a dummy variatdieating whether the house-
hold owns a motor pump. The number of years is a reasonabiteatod as farmers usually
start their irrigation business with buckets in order tdtdhater to pump irrigation as soon as
the necessary financial capital has been accumulated.
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Table 4.18: Variables for the second step of the nested ihrtagdel for irrigation decisions
Variable Definition Data Source

Dependent Variable

Hirr method Irrigation method (dam, pump or bucket irridnterview
gation)
Independent Variables

Hcash rainy Cash income from the rainy season (iiterview and
Cedis) Calculation

Hdry years I\_lum_ber of years the farmer is involved in irinterview
rigation farming

Hpump Dummy variable indicating whether thenterview
household owns a motor pump

Hdist dams Minimum distance to dams (in m) Map-based

Calculation

Results of second step of irrigation m-logit model

This model, which simulates the choice among the threeaitiog alternatives, has a rela-
tively high predictive power (Table 4.21), with a NagelkefR Square of 0.940, although the
variables show fairly good significance levels (Table 4.29nong the three irrigation alter-

natives, all cases of dam irrigation and bucket irrigatios @rrectly predicted, with about

76.2 % of correct predictions for the pump irrigation methadtotal, 94.1 % are correctly

predicted (see Table 4.20).

The results of the m-logit regression are not fully consistth the theory of the
influence of the selected variables as outlined above. In ¢ash income positively influ-
ences the choice of the more costly pump irrigation, but th@pdummy variable and the
number of years the farmer is involved in irrigation farmheydly show any influence in the

choice among these two riverine irrigation methods.

4.5 Summary

The assumption that flierences in the livelihood background result iffelient land-use be-
havior is verified, as we have seen that the preferencesridrdae types and the tendency

to irrigate among livelihood groups of farmers vary strgn(fee Figures 4.5 and 4.6). To
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Table 4.19: Second step of the nested irrigation decisiotlel@arameter estimates

Irrigation Std.
Method Variables B Error Wald df  Sig. Exp(B)
Motor pump Intercept -484.079 3025.502 0.026 1 0.873
Hcash rainy(109) 27.112  203.890 0.018 1 0.894 6811
Haist dams -0.130 0.000 470405 1 0.000 0.139
Hary years -8.647 62.060 0.019 1 0.889 0.000
Hpump -413.307 6970.703 0.004 1 0.953 3.18E-180
Bucket Intercept -484.079 3025.502 0.026 1 0.873
Hcash rainy(109) 26.614  203.890 0.017 1 0.895 AELl
Hist dams 0.131 0.000 .1 : 1.139
Hary years -8.457 62.060 0.019 1 0.892 0.000
Hpump - 437.689 0.000 .1 . 8.2E-191

The reference category is irrigation

Table 4.20: Second step of the nested  Table 4.21: Second step of the nested

irrigation decision model: correct irrigation decision model:
predictions statistics
Predicted Model Fitting Pseudo
Percent Information R Square
Observed Dam Pump Bucket Correct P
X

Dam 25 0 0 100% Chi- and  Nagel- Mc
Pump 0 16 S 76.2% Square df Sig. Snell kerke Fadden
Bucket 0 0 39 100%

Perc. 204% 188% 51.8% 94.1% 149595 8 0.000 0.828 0.940 0.828

derive such livelihood groups, the livelihood framework &zlecting livelihood indicators
was applied, followed by the application of PCA and k-CA. &h®n the identified liveli-
hood indicators, the PCA revealed seven core factors tftareintiate livelihood typologies
of farming households in the study area, namely land, ldb@stock, and income factors,
two factors representing the preference for groundnut antpound farming, and the depen-
dency ratio.

Based on these seven extracted components, classificaiiog ktCA resulted in
three livelihood typologies of households: the 'middlessifathousehold type 1), the 'poor
farmers’ (households type 2), the 'rich farmers’ (housdippe 3). Further land-use analyses
for each household type revealedtdiences in patterns of land-use choice. As such, the
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cultivation of cash crops had a higher proportion among itte and middle class farmers,
whereas the poor farmers had a tendency to focus on sulzgsteops. Moreover, there
was an imbalance of irrigation practices among the idedtilileelinood groups, i.e. the
percentage of irrigation farmers in general and pump fasnreparticluar increased with the
level of living/livelihood standard.

After the derivation of livelihood groups, sub-models fantl-use choice were pre-
sented and calibrated, whereby the range of explanatorgblas and the choice of model
were justified, and the results presented. These sub-miodtlge the choice between rainy-
season and dry-season land-use types, the decision taghtiion farming, and the choice
of irrigation method. All decision models were developedtbe basis of m-logit regres-
sion, apart from the choice among dry-season land-use,tgga® meaningful variable set
could be identified to explain choices among land-use typékis season. The preference
codficients for the m-logit model for rainy-season land-use cheovere determined for each
livelihood group separately, since the results of a deseegomparison of land-use pref-
erences among livelihood groups suggested the relevansecbfa diferentiation. These
differences in land-use choice are reflected by tieminces in the direction, magnitude and
significance of the preference dheients, which clearly show considerable heterogeneities
in local land-use choice behavior. In general, househdidf groups choose land-use types
based on the considerations of a range of household chasticee natural conditions and
particular policy factors.

With respect to the modeling of irrigation-related deamsipa group-wise approach
was considered to be unreliable due to the relatively sraafide size of irrigation farmers,
which did not allow any further splitting. Instead, the gnefnce coficients were computed
for the total population, which turned out to be the more sttapproach. These irrigation-
related decisions were modeled as a nested m-logit modahwitluded the decision to do
irrigation as a first step, and as a second step, the choicegztion method. Both environ-
mental and household characteristics as well as policpifaatere included as explanatory
variables within this nested model to reflect the socio-eaun as well as the environmental
conditions necessary for the engagement in irrigation.

The results and structure of these land-use choice modet¢sintegrated into GH-
LUDAS within the Decision Module The preference @@ents were used to compute the
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land-use choice probabilitiagilities, whereby each land-use option during model ruseis
lected by an agent with its respective probability, thuswvaihg bounded rational decision-
making behavior.
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5 ECOLOGICAL DYNAMICS OF HETEROGENEOUS LANDSCAPE
AGENTS

5.1 Introduction

Complex processes of land-use and land-cover change (LE@$&) not only from the diver-
sity of human decision-making, but also from the heterogaselynamics of the environment
(Parker et al., 2003). Environmental drivers of land-usggiens, e.g. current land cover, to-
pography, soil conditions, and agricultural productigge Chapter 4), often vary over space
and time. These environmental conditions can be changeédrdiy human interventions or
by natural processes that are beyond human control (e grahaegetation growth araor cli-
mate variability). In any attempt to model environmentahdmics, it is therefore important
to consider the initial spatial heterogeneity of the lamagigcas well as natural processes and
ecological impacts driven by human agents, leading to oisigthis heterogeneous pattern
of the landscape.

These dynamics as well as the initial biophysical condgisimould be captured and
calibrated in a spatially explicit way in order to match readrld processes. According to
agent-based design, a natural landscape is representsel florin of a grid of cells that are
autonomous landscape agents. In order to obtain a spatigbiycit representation of the
processes and status of the landscape, every landscapeeadd to be endowed with inter-
nal state variables storing heterogeneous spatial datlayah internal models of relevant
ecological processes, which work in response to the intstate of the landscape unit, in-
putginterventions of human agents, and other global envirotahéactors (e.g. climate).
This agent-based representation of the landscape thus tee@scape dynamics as a self-
organized phenomenon, which evolves from micro-autonapoocesses (Le, 2005).
Following this paradigm, two tasks were performed:

1. The identification and generation of relevant biophysieaa for the initialization of
the state of the landscape agents, and

2. The development and calibration of ecological sub-n&mdepresenting the temporal
dynamics of landscape agents.
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The first task includes the characterization of the landsespironment in a spatially explicit
way, e.g. in the form of GIS raster layers using real datduaing topography, accessibility,
soil and land-cover classifications, and hydrological dat&and suitability analysis for irri-
gation is also part of this task, as a meaningful representat the irrigability of landscape
agents plays a major role in modeling irrigation-relatedisiens. All selected variables for
this landscape characterization should be relevant toaligration of ecological processes,
or be main drivers of human decision-making regarding resouse.

The second task includes the development and calibratioimphysical sub-models,
comprising productivity functions for each land-use typdivestock dynamics sub-model,
which is related to a specific forage productivity functiamd a land-cover transformation
model. While the former two sub-models specify yield andafm productivity, the land-
cover transformation model simulates conversions amamdr¢aver types. Since ecological
dynamics of the landscape agents are the combined resutlohbterogeneous natural pro-
cesses (e.g. vegetation growth, erosion), and interventdd human agents (e.g. manage-
ment practices), the ecological sub-models are designednsider both natural and human
drivers.

5.2 Characterization of heterogeneous landscape agentscamodeling of relevant eco-
logical processes

For a realistic representation of the landscape, both theackerization of the landscape in
terms of biophysical and environmental attributes, as aglthe respective ecological dy-
namics within this landscape have to be considered. Thadatidscape is modeled as an
aggregation of heterogenous landscape agents, each ehdatvés own state variables and
ecological processes. In this chapter, the landscapbwts relevant to land-use decision-
making and ecological mechanisms are identified and claiaetl, comprising land cover,
soil attributes, hydrology and topography. These attébuepresent the general setup (or
static condition) of the landscape as it was in 2006.
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5.2.1 Landscape characterization

In this section, the basic characteristics of the landseaperesented, including a land-cover
classification and the basic biophysical attributes thatohimportance for the dynamics of
the coupled human-environment system of landamer change. These attributes are in-
terpreted with respect to the ecosystem’s primary prodiigtiFurthermore, the sources and
methodology used to derive a spatial representation oéthttsbutes are given.

Land-cover classification

Because land cover is clearly a key variable of MA3CC models, an accurate mapping
of this variable is critically important for the calibratiaand initialization of the simulation
model (Le, 2005). An approach often used to derive main lamekr types is the analysis
of satellite images via remote sensing using automaticsifieation methods. Such auto-
matic classification methods extract the main land-coveesybased on spectral information
of the satellite image. But since some land-cover types maibé similar spectral prop-
erties, the accuracy of such automatic classification dlguos is often limited. Therefore,
such algorithms are often used in association with oth@riétion sources to interpret the
automatically derived land-cover classes, e.g. aeriatqgraphs, a high-resolution satellite
image, or ground-truth data.

An automatic classification method was conducted on the ASirRage (USGS
and Japan ASTER Program, 2007), using the Unsupervisediftiation procedure in ER-
DAS. The image was taken at the end of the rainy season whevetietation is mature,
thus showing the highestftierence in spectral attributes. The Unsupervised Clagsifica
extracted 15 spectral classes, which were then interprestied) ground-truth data collected
in September 2006. The ground-truth data were randomlyratguhinto two equal sets. The
first set was used to interpret the 15 spectral classes agdday the Unsupervised Classifi-
cation, while the second was used to validate the interpietsses.

The interpretation of the 15 spectral classes resulted irapmtand-cover types
(Figure 5.1), including i) forest, ii) water, iii) cropland/) grassland, and v) bare land. Wa-
ter covered about 0.1 % of the study area, forest about 4.30%lastd about 63.8 %, and
grassland and bare land 25.4 and 6.4 %, respectively. Ttagesvare in accordance with
previous studies (e.g. Martin, 2005). The second set ofrgtdwith data was used to validate
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these classes. The actual value as observed by the graithdstirvey was compared to the
predicted value given by the classified land-cover map €&ll). In total, 58.2 % of the
land-cover classes were correctly predicted.

Since the resolution of the ASTER Image (15 m x 15 m) did nawvak correct pre-
diction of the river network, this feature was manually tiggd using the Quickbird image
(DigitalGlobe, 2007), which had a higher resolution. Thetiof this river network was set
to 30 m, which corresponds to the patch size in GH-LUDAS.

Determination of relevant soil-water attributes

Being one of the major determinants of an ecosystem’s pyiiaductivity, the inclusion of
the spatial variation of the s@iVater status is essential for modeling ecological procsesee
the landscape scale (Park and Vlek, 2002). As the deterimimat these spatial sgWwater
conditions is a complex issue, a reliable approach had toskd to represent this factor.
According to agent-based modeling philosophy, the mostagpate approach to model a
complex phenomenon is by identifying its basic constitwkiviers. Thus, a range of param-
eters was chosen to explain this factor of sadter conditions: i) two direct soil parameters
to represent soil attributes, using a soil texture paranaete a soil fertility parameter, ii) sev-
eral indirect indicators explaining soil formation thrdutppographical conditions, and iii)
two kinds of parameters describing water availability,resenting runfi and groundwater
availability, respectively. The groundwater parametaciude average groundwater level as
well as average groundwater recharge, while the fiuparameter is represented by a topo-
graphical wetness index, which is calculated from topolgicg attributes.

Table 5.1: Land-cover classification: correct predictions

Predicted
Observed Forest Cropland Grassland Bare Land Total Pagent
Forest 13 2 3 0 18 0.722222
Cropland 26 254 66 11 357 0.711485
Grassland 4 88 59 7 158 0.373418
Bare Land 0 7 16 25 48 0.520833
Total 43 351 144 43 581 0.581989
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Figure 5.1: Land-cover pattern in the study area

Soil attributes

With respect to crop productivity, soil fertility is the afa&teristic of the soil that supports
abundant plant life, being the combineteets of three major interacting components. These
are the chemical, physical and biological characterigifdbe soil (Soil Health, 2008). The
physical and chemical characteristics of soil are far bettelerstood than those of the bi-
ological component; therefore quite a lot is known aboutdésired chemical and physical
status of soils. (Soil Health, 2008).

The well-known main biological conditions include the abbance of organic matter
and micro-organisms, while the main chemical attributgsdrtant for plant growth comprise
the abundance of and access to nutrients and minerals (&alil;12008). The physical struc-
ture of the soil is the third component defining soil feryiliand includes soil texture, depth
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Figure 5.2: Soil fertility and soil texture classificationghe study area. Source: Adu, 1969

of topsoil, soil structure, and permeability. Since the bored dfect of these attributes is
a better explanatory factor for crop productivity than thensof these single attributes, we
decided to represent this factor by general soil fertilisses (as a rank from 1 to 5). Fur-
thermore, since soil texture seemed to play a special raleeirthoice of land-use type and
crop productivity, especially in the dry season, we decidetteat this attribute as a separate
variable. Spatial data of soil texture and soil fertility egenerated using soil maps and
information from Adu (1969) (see section 2.5.2 for details)

Topographical factors

It is well known that the terrain regulates the flow of surfasedf and soil particles, thereby
strongly determining the landscape patterns of soil anéreainditions (Gessler et al., 2000).
Numerous studies have shown how the shape of the land sudac#ect the lateral migra-
tion and accumulation of water, sediments, and other domesiis (e.g., Wilson and Gallant,
2000). These constituents, in turn, influence soil deveknte.g. Kreznor et al., 1989),
and exert a strong influence on the spatial and temporaltdititins of light, heat, water, and
mineral nutrients required by photosynthesizing plantdg®d and Gallant, 2000).
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Figure 5.3: Topographic attributes of the study area

The formation of soils induced by topography refers to thecept of catena, which describes
the sequence of soils along hill slopes. The catenary hgsathis that soil development
occurs in many landscapes in response to the way water mioreggh and over the land-
scape. Furthermore, terrain attributes can charactdremetflow paths and, ultimately, soil
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attributes. Soil properties such as soil depth (Gessldr,e2G00; Park et al., 2001), pH, or-
ganic matter content and soil moisture content (Wilson aaliia@t, 2000) have been shown
to be dependent on terrain factors. The catena principyether with available topographi-
cal data, has been widely used in modern soil survey teckri(pig. Dobos, 2005; Sobieraj
et al., 2004). The basic terrain factors to represent taguigr used in this study comprise
elevation, slope degree, and upslope contributing aremjw defined as the total drainage
area of the catchment above a certain point on the lands€apthermore, a wetness index
was derived from these data, representing the spatialrpatté soil moisture content as a

result of topographic surface flow, being calculated as:

I:)upslope) (5.1)

Pwetness= In (

where Retness's the wetness index, Bsiopethe upslope contributing area, anddge the
slope gradient. The upslope contributing areg,(Bpd is defined as the total catchment area
above a point on the landscape. For a grid &lPpsiopeis computed from the grid cells
from which the water flows into the ceh:

1 n
Pupslope= b ZPiAi (5.2)
i=1

whereA, is the area of grid celP, nis the number of cells draining into the c@] p; is the
weight depending on the ruffi@generation mechanism, abds the contour width approxi-
mated by the cell size (Park et al., 2001). All topographuezalables were calculated based
on the digital elevation model by Le (2006) (see section2.5.

Groundwater

The final component of the soil-water factor is representegrbundwater variables, since a
wetness index alone does not describe water availabiliticgntly, especially in the dry sea-
son, where rainfall plays a minimal role. Water stored fraimy-season rainfall as ground-
water plays a distinct role in dry-season irrigation fargnin areas where access to dams
is limited. To represent this factor in an appropriate whg, following two variables were
included: i) the average seasonal groundwater level, adiites the area where groundwater
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can be accessed through digging, and ii) the average ségsonadwater recharge. The lat-
ter variable has been included since it describes the waldés balance of the groundwater.
Spatial data on groundwater table and recharge were ddrimadViartin (2005) (see section

2.5.2)

Spatial accessibility

Spatial accessibility can be defined as the ease with whiahgattlocation may be reached
from another location. Variables determining spatial asiislity are often key variables
when modeling land-use choice, as they define the spatialtvars in required patch at-
tributes when making land-use decisions. Proxy varialilaswere found to play a signifi-
cant role include distances to water sources (i.e. damshanchain river) and the distance
to the national border. Distances to other features sucbaaisrand locainain markets were
neither statistically significant in modeling land-use ickkonor did they play a role for land-
use choice according to local estimation. On the other hidmeddistance of a plot to water
sources such as dams or rivers can be regarded as an imgmaagtvariable within the
study area, since the decision for irrigation farming on &lpas highly dependent on this
distance, as most of the irrigation activity is confined tesralong the main river and around
dams.

This factor of spatial accessibility to water bodies is esgnted by the variable
distance to water sources«R wate)» Which is calculated as the minimum distance from
the considered pixel to water sources, including dams aaanihin river. Furthermore, the
distance to the Ghana-Burkina border was another impopiaxy factor, as the land-use
pattern varied strongly along the axis from the border innthgth to the southern part of
the catchment, which was the more active area with respeantidation farming and other
activities. Due to lower soil fertility and lower water alability in the northern part, the
area was less populated and farming was rather focused sistarize crops, whereas in the
densely populated southern part cash cropping was morelabtin

Features of the dams and main river were digitized using akpud image, which
had been taken in early 2006. The Ghana-Burkina border wiaagcéad from national map
(1:50000). Distance maps to these features were finallyrgete using the find distance
routine in ArcView GIS 3.2. Distances to nearest dams andrtam river (Rjist wate) Were
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Figure 5.4: Groundwater level and recharge in the study. &earce: Martin, 2005

automatically calculated using NetLogo.

Analysis of land suitability for irrigation

In this section, a land suitability analysis with respecirtigation will be presented for the
study area. The final target is to define the irrigable aretoagly as possible, as this parame-
ter is essential in modeling the maximal extent of dry-seasudtivation activities. According
to the FAO Bulletin for Land Evaluation For Irrigated Agriture (FAO, 1985), the environ-
mental attributes explaining irrigability include topaghy, soil, water resources, climate,
and drainage. Out of these categories, a range of parametsied to be identified that were
explanatory factors for irrigability in the study area. hetfirst part of this section, we will
present and justify the range of selected variables. Ingbersd part, we will present a model
for the determination of irrigability based on these parterse This model calculates an ir-
rigation codficient between 0 and 1 for each landscape agent, with the gallendicating
highest possible irrigability. Thus, a threshold betweem@ 1 for this irrigation ca@cient
needed to be chosen to define the final extent of the irrigakeke arhis threshold will be
determined by analysis in the third part of this section.
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Figure 5.5: Spatial accessibility to water sources in thdysarea

Model of the irrigation coefficient

Range of variables

As no data were available about the extent and pattern ofrigalle area in the study area,
we decided to develop a model simulating the irrigabilityttoé landscape. According to
the FAO Land Evaluation Bulletin for Irrigation (FAO, 198%)e chose a range of indicators
from each explanatory category that seemed to be resperisitthe pattern of the irrigated
area in the study area. Factors representing climaticrpatteave not been included in the
analysis, due to the assumption that climate is uniform thestudy area.

According to the FAO study, the topographic features infbireg irrigability in-
clude slope gradient and position; the latter is defined byagion and distance to water
sources. Higher slope gradients usually limit the irrigatpossibilities, but since the topog-
raphy of the study area can be regarded as quite smoothathes §hould not play arole as a
factor limiting irrigation. Instead, the position in relan to command area and accessibility
is considered to play a decisive role, as elevation andrdistaf the water source ofteffacts
the irrigable land area in irrigation schemes (FAO, 1983)ud, the distance of the patch to
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the main river, as well as its elevation, were included inghalysis.

Furthermore, soil attributes with respect to water-hajdiapacity had to be consid-
ered. Water-holding capacity is controlled primarily byl $exture and organic matter (Ball,
2001). Soils with a high percentage of silt and clay parsitiave a higher water-holding ca-
pacity. Furthermore, organic matter content is relateddatewholding capacity in a positive
way, i.e. the higher organic matter content usually resnlgshigher water-holding capacity
because of theflinity organic matter has for water. Since data about orgaaitencontents
were not available, we only included the parameter of sgtlire in the analysis to represent
irrigation-relevant solil attributes.

Third, as the component of water resources had also to ba tateaccount, two
parameters defining groundwater availability have beednd®d in the analysis: The average
dry-season groundwater level, and the average dry-seasandyvater recharge (see section
5.3.1). Furthermore, as groundwater level alone does riotedthe availability of water to
the plant, the topographic wetness index was further iredud the analysis to represent the
inherent soil moisture of the soil due to topography.

Modeling the irrigation cogficient

For calculating the irrigation cdicient, first an m-logit model was developed to calculate
the probability of a patch to be irrigated. The model is basedhe empirical patch-based
data set, including both irrigated and non-irrigated pltagether with a set of patch values
of the range of explanatory variables as outlined abovee®as these empirical data, the
model calculates the probability of a patch to be irrigateith values between 0 and 1. The

calculation of this probability’roby,, can be expressed as:

Table 5.2: Variables for explaining irrigability
Variable Definition

Pelevation  Elevation (in m)

Psoil texture  SOIl texture represented the rank of textural class (asgerfrom 1 - 21)
Pgistriver  Distance to main river (in m)

Puetness ~ Wetness Index, i.e. In{Bsiopé tan Rjope

Pgwi Groundwater level (m below ground)

Pawr Groundwater recharge (mimonth)
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Proby, = «a + 1 Pelevationt B2 * Pdist river+ 83 * Psoil texture™

+ Ba - Pgwi + Bs - Pgwr + Bs - Pwetness

(5.3)

wherea is a constantl; the explanatory variables, apgdcodticients calculated by running
SPSS. In Tables 5.3, 5.4 and 5.5, the results of the m-logdemare shown, under the
assumption that a plot is irrigated when the probabilityi8.5. Comparing the observed
to predicted variable of irrigation, among the actuallygated patches 71.0 % are correctly
predicted.

Further, we define the irrigation cheient By, coaf &S the probabilityProly,, for all
patches of the landscape, i.e. using thefledents as calculated above (Table 5.3) Ref
is calculated in the following way:

Pitr coet = @ + B1* Pelevationt B2 * Pdist river+ 53 * Psoil texturet

+ B4+ Pgwl + Bs - Pgwr + Be - Pwetness

(5.4)

whereP; are the explanatory variables gidhe codficents calculated by SPSS above. This
equation was used in GH-LUDAS to calculate the spatial ithstion of the irrigation coef-
ficient as defined. Naturally, all variables apart from theugidwater-related §g and Ry
variables are static, but due to the lack of a temporal hydjioal groundwater model, these

two variables were also considered as static.

Determination of the irrigable area
The threshold for the irrigation c@&ient had to be set such that the area with values above
this threshold matched the actual size of irrigable areaiwithe catchment. The actual
irrigable area can be partitioned into: the actual culédadrea during the dry-season, and ii)
irrigable area not yet opened up. Thus, the size of the btegarea can be regarded as the
sum of irrigated area and irrigable area not yet developed.

To define the actually cultivated area, the irrigated aretho$e households that
had been selected randomly from th&elient villages was summed up and upscaled thus
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Table 5.3: Modeling irrigation of patches: parameter eaten

95 % Confidence
Interval for Exp(B)

Std. Lower Upper

Not Irrigated B Error Wald df Sig. Exp(B) Bound Bound
Intercept -8529 4.034 4470 1 0.034

Pwetness -0.088 0.038 5257 1 0.022 0.916 0.850 0.987
Pelevation 0.036 0.022 2.715 1 0.099 1.037 0.993 1.082
Pdist river 3.718 0.724 26.387 1 0.000 41.178 9.968 170.116
Psoil texture 0.706 0.270 6.847 1 0.009 2.026 1.194 3.439
Pgwi -0.002 0.011 0035 1 0.852 0.998 0.976 1.020
Pgwr -0.015 0.012 1415 1 0.234 0.985 0.962 1.010

The reference category is irrigated

Table 5.4: Modeling irrigation of patches: Taple 5.5: Modeling irrigation of patches:

correct predictions statistics
] Model Fitting Pseudo
Predicted Information R Square
Not Percent
Observed Irrigated  Irrigated  Correct _ Cox
_ Chi- and  Nagel- Mc
Not Irrigated 564 11 98.1% Square df Sig. Snell kerke Fadden

Irrigated 18 4 71.0%
Overall Percentage 91.4&  86% 954% 230.79 6 0.000 0.304 0.644  0.568

that it represented the total irrigated area of the wholehsaent population. To determine
the irrigable area not yet opened up, we followed the assomfitat the maximum number
of farmers involved in irrigation is only constrained by taeailability of suitable land. It
was observed that more farmers are inherently capable e$elgon farming than farmers
actually doing it, mostly due to limitations in land availlity. Therefore, the number of
irrigation farmers was assumed to converge against a péntait during time, according to
the availability of irrigable land. This upper limit of faens who can do irrigation farming
is then proportional to the irrigable area. In mathematieains, this relationship can be
expressed as:

Irrigated Area Farmers doing irrigation
Irrigable Area  upper limit of farmers doing irrigation

(5.5)

With help of this equation, the amount of irrigable land candalculated if the
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upper limit of irrigation farmers can be determined. To dethis upper limit, the number of
farmers doing irrigation from the empirical data set wastplbagainst time (Figure 5.6).

To approximate these data by a curve, a function had to betedleith a minimal
error to the observed data. This error is usually repreddoyethe R Square, which is the
square of the correlation cficient between observed and fitted data. To identify such a
curve with maximal R Square, 150 model types were testedhigir R Square using the
XLfit Extension of Excel. Finally, the curve with maximum R &ge (R= 0.999023) was
selected, called the Richards Function (see Figure 5.6¢ niithematic expression of this
function is:

Richardgt) = fracA((1 + e<B-<C")>)<%)) (5.6)

whereA, B, C, D are constants calculated by XLfit, ahds the time. To derive the upper
limit of farmers possibly doing irrigation, the limit for ihfunction had to be determined: For
t — oo, the terme®-©Y converges to 0. Thus, the limes of the function can be detesthi

as follows:

. . . 1 A
limy. e Richard$x) = limy_,. fracA((1 + e(B‘(C'X)))(B)) =170 A (5.7)

Thus, the irrigable area can now be calculated as:

Irrigated Area A

Irrigable Area= —
9 Farmers doing irrigation

(5.8)

Based on this calculation, the irrigable area in the studg amounts to 291 ha. The thresh-
old of the irrigation co#icient to define irrigability within the model was then set tatoh

this number.

5.2.2 Modeling agricultural yield response

Decision-making processes in agriculture often requiliabke crop response models to as-
sess the impact of specific land management (Park and VI€R)2T here are two distinct
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Figure 5.6: Curve estimation of the number of irrigatiomiars

modeling approaches, i.e. empirical and process modelgldatifying crop yield responses
(Jame and Cutforth, 1996). Process-based crop growth swadelbuilt using mathemati-
cal equations to model quantitatively plant-soil-atmasphinteractions (Sinclair and Selig-
man, 1996; Matthews 2002). Because process models ekplivitude plant physiology,
agro-climatic conditions and biochemical processes ethasdels are supposed to be able to
simulate both temporal and spatial dynamics of crop yielttapirical models, on the other
hand, attempt to determine functional relationships betwerop yield and soil-land man-
agement factors using regression or correlation analgstharacterize these relationships
statistically. Technologically, empirical crop growth deds are relatively simple to build or
develop, but these models - in contrast to process-basedlmodannot take into account
temporal changes in crop yields without long-term expenta¢Jame and Cutforth, 1996).
While process-based models are often preferred over ezapames in current mod-
eling communities, empirical crop growth models still pky important role in identifying
the hidden structure of crop growth processes relating tide vange of land management
options (Park and Vlek, 2002). Furthermore, process-basmikels require a high level of
technological sophistication and calibration-verifioatprocedures, which are limiting fac-
tors for a wider application (Sinclair and Seligman, 199&pBens and Middleton, 2002).
The failure of many of these complex process-based crop imbds, understandably, been
ascribed to insflicient knowledge about the details and intricacies of theedgichg physi-
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Figure 5.7: Spatial distribution of the irrigation deient in the study area

ological processes (Sinclair and Seligman, 1996). Ndyyrthlese kinds of models require
careful calibration and verification, which is especialipiplematic for developing countries,
where the necessary technological and financial resoureeareadily available (Stephens
and Middleton, 2002). Consequently, parameterizatioaroftomes from previous research
conducted in dferent environmental conditions or from expert opinion. Tiheertainty as-
sociated with such parameterization may greatly decrdeeseaidity of model outputs and
the reliability of model application (Penning de Vries et 4B89; Stephens and Middleton,
2002).

For this study, we selected the empirical approach to maahel Lse productivity
for three reasons. First, as our modeling scale consistsltWation systems rather than of
detailed crop varieties, it would have been unnecessaoigpticated if the process-based
approach had been applied. Second, as mentioned abovalittration and verification of
process-based models would require an understanding ohttherlying processes and data,
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which are usually not available in developing countries.irdhsince the main goal is the
prediction of yield response rather than the understandirtge underlying processes, the
approach of empirical models, which are usually more rothast process-based models, is
the more straightforward one for our purposes.

Methodology

Among empirical models, three major approaches have beshtospredict crop yield re-
sponse in agricultural science: Linear Multiple RegresgiodMR), Regression Trees (RT),
and Atrtificial Neural Networks (ANN) (Park et al., 2005). Cparisons of the goodness-of-
fit of these three approaches applied to maize yield resgongastern Uganda can be found
in Park et al. (2005). Although regression trees seem to hate pbust model, they clearly
have some drawbacks. They usually need a large data baseditalde, as they only catego-
rize the observed yield data according to th@edlent explanatory factors. Furthermore, due
to the use of a categorizing approach, their predictive pasvew for input and yield values
that lie outside the observed data range (White, 1996).llginke difficulty in interpreting
the causal relationships is a clear drawback for the apgpicaf regression trees (Park et al.,
2005). The same is valid for artificial neural networks, assthalso require a large sample
set and also tend to work as a black box. These latter two apbes also certainly have
their strengths, but as we are not only interested in priedicrop yields, but also in inter-
preting the relationships between explanatory factorsysld response, we decided to apply
the linear multiple regression approach, which allows sot#rpretations. Furthermore, the
methods regression trees and artificial neural networksineq large data set, which is not
given in our study, as we had to separate the yield data ses@vieral land-use type specific
samples.

The general purpose of linear multiple regression is to tifyathe relationship
between several independent or predictor variables ang@endent or criterion variable (in
our case Yyield response) by using linear combinations. hEuriore, additional terms of
the interactions among the predictor variables can be dieclun the model of crop yield
response, as one might easily anticipate that soil and laarthgement variables are highly
correlated (Park et al., 2005). This way, the model can bectigpbmathematically as:
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k k k
PYie|d=CY+Z,3i'Xi +ZZ,3U AEDS (5.9)
i=1 i=1 j>i

wheree, §; andg;; are codicients as calculated by the linear regression proceduteXan
the predictor variables suggested to explain crop yieldaese. The last term of this equa-
tion represents the interactions among the predictiveabbes. The great advantage of this
approach is that it can take into account not only the ratatigos of the predictor variables
with the dependent variable, but also the relationshipsrntioe multiple independent vari-
ables.

However, a purely linear relationship between predictoraldes and yield is un-
realistic in most cases. Instead, it is more intuitive timeat yield follows a logarithmic or
convergent curve in response to the explanatory variabtethere is a certain limit to agri-
cultural output, even if input factors and biophysical ahility increase continuously. The
most common approaches to generate such non-linear redbtps include the use of the
logarithimic, square root, and reciprocal functions (segf@ et al., 1987). The advantage
of these functions is that they still allow the use of lineagnession techniques. For example,
by using the logarithmic approach, linear regression tnadentify a linear relationship be-
tween the logarithm of the output variable, i.e. yield, ané bbgarithms of the explanatory
factors. Although we have a linear relationship among tigadithmized variables, the rela-
tionship between the plain variables result in a logarithfuinction. As such, the productivity
function based on logarithms can be mathematically expceas:

LN(Pyielq) = @ + Zk:ﬁi - Ln(X;) + interaction factors (5.10)
i=1
where the interaction factors can either be products ofaparithmized or the plain variables,
being $1<, 3%, Bij - Ln(X)) - Ln(X;) or 3k, 3%, By - X - X, respectively. Without interac-
tions, this function is also known as the logarithmized farhthe Cobb-Douglas function,
which is one of the most common functions used for predicfielyl response (Gfiin et al.,
1987). If interactions are used, this form is known as thestandental production function.

Accordingly, by replacing the logarithm by square roots, siquare root function can mathe-

161



Ecological dynamics of heterogeneous landscape agents

matically be expressed as:

k
VPyield = @ + Zﬁi . /X + interaction factors (5.11)
i=1
where the interaction factors can again either be prodddtsecssquare root of the variables
or the plain variables, being; 3%, 8ij - VX - y/Xj or
Y 2B - X - Xj, respectively (see Gfin et al., 1987).

Finally, the reciprocal function is expressed as:

k
1 . .
=a+ Zﬁi v + interaction factors (5.12)
i=1 i

1

Pvield

where the interaction factors can again either be prodddiseoreciprocal variables or the
plain variables, bein@; ¥ 8 - % - x or i 2B - X - Xj, respectively. This type of
function is usually called the modified resistance func{gee Grifin et al., 1987).

General rules about which type of function to use and whethese forms of in-
teraction, do not exist. Rather, statistical analysis nbestised to identify which functional
form best fits the observed data. As such, we applied all mariaf functional forms to the
empirical data set in order to identify the form which begpraximates the empirical yield
data. The R Square, which is a common value to measure thegseaf-fit of the respective
fitted linear curve, is presented in Tables 5.7 and 5.10 fdhake functional forms and for
each land-use type. According to these values, we will thstify the choice of functional

form.

Modeling dry-season yield response

The dependent variable of the yield response model is tlaédoip yield for each land-use
type, but since each agricultural land-use type can inahlidies than one crop, the harvests of
crops were converted to monetary values, based on the aiex@) prices of the year 2006.

Range of variables
Crop growth is an extremely complex process in both time grate. Changes in weather
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conditions influence soil moisture, root uptake and wated temperature-related stress on
plants. At the same time, fliérent parts of the landscape experiendgedent water avail-
ability and soil nutrient status because of pedologicatugfeneity and lateral water-nutrient
flows related to the shape of the terrain (Park and Vlek, 208@art from that, the depletion
and replenishment of soil nutrients over time and the $eesic land management (e.g labor
input) lead to significant changes in crop yield. The agtimall yield of each land-use type
can, therefore, be conceptually described as a functiotirofte conditionsC), soil/water
conditions §W), and land management practicés)(

Pyield-dry = f(C,SWM) (5.13)

Because of the relatively small size of the study area (ab®9kn¥), is is reason-
able to assume that the climate factor C is uniform over thdysarea. Furthermore, as no
reliable data describing the relation among climate chargkdry-season crop yield were
available, this factor was also assumed to be constant iover t

The soifwater conditions (SW) of the patches can be approximateddirigation
codficient and soil fertility. The irrigation cdgcient, which is calculated as a combination
of soil attributes and water-related parameters, reptesiea factor of water availability with
respect to the cultivation of irrigated crops. Soil fetyilion the other hand, represents a com-
bination of soil-specific parameters important for cropdieFor the model of agricultural
yield response, we decided to use these two coupled indatlesrrthan a single biophysical
variable, since previous studies showed that one singlexiatbne does not always give a
good representation of soil-water patterns (e.g. Westeah,e1999).

Among land management factors, labor input (in labor days) iaput of agro-
chemicals (in Cedis) should be the prior variables for adersition, as these inputs directly

Table 5.6: Variables for predicting dry-season yield
Variable Definition

llabor Input of labor (in labor daysy)

lchem Input of chemicals (Cedis¥)

Psoil fertiity SOl fertility (as a range from 1 to 5)

Pirr coeft The irrigation coéicient (between 0 and 1)
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influence plant growth. It is common knowledge that tomat@spond well to fertilizer
applications, especially nitrogen and phosphorus. Howéle sensitivity of crop yield to
these factors may befierent among the two land-use types, depending on the ndteaelo
land-use type and actual natural conditions. The instdoesgaof labor and chemical input

are determined by household agents, whose behavior isrggvéy the Decision Module.

Thus, the productivity function modeling dry-season yiedah be formally expressed as:

I:)yield-dry = f(Pirr coefs Psoil fertility» | chem l1abop) (5.14)

where Ry coeft IS the irrigation coiicient, Ryj fertility the soil fertility, lchemthe amount of
agro-chemicals, angh} o, the total amount of labor input.

Model choice and results

Based on this range of variables, all functional forms wesgetd on their respective R Square
for both land-use types (see Table 5.7). The logarithmiction with plain interaction terms
shows the best results for both land-use types. Theref@sglected this functional form for
predicting dry-season yield based on the selected explgneariables as described above.
This way, the mathematical expression of the function idevrs:

k k k
Ln(Pyieig-dry) = @ + Y Bi-Ln(X) + > > Bij - X X (5.15)
i=1 i=1 j>i
whereX; are the explanatory variables, thetheir respective cdicients, andr a constant,
both calculated by linear regression using SPSS. The vafubsse coficients indicate that
many of the explanatory variables are highly correlatedi¢tdyresponse (Table 5.8). The
basic factord_n(X;) are significant at levels 0.1, 0.05 and 0.01. The input We&of labor
and chemicals are positively related to yield responsetheshigher these inputs, the higher
the resulting yield (although there is certainly a limit)tdresting is the fact that the irrigation
codficient is negatively related to crop yield, i.e. the highex Water availability, the lower
the crop yields. The reason might be that poorly drained suith little organic matter and

high clay content, as is the case in the study area, can cayis&lalecline in response to
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Table 5.7: R square values for functional forms for predigtiry-season yield
Dry-Season Land-Use Types
Monoculture Mixed Culture
of Tomatoes  of Tomatoes

Linear

Without Interaction Terms 0.551 0.623
With Plain Interaction Terms 0.669 0.671
Logarithmic

Without Interaction Terms 0.452 0.782
With Plain Interaction Terms 0.661 0.967
With Log. Interaction Terms 0.554 0.842
Square Root

Without Interaction Terms 0.570 0.665
With Plain Interaction Terms 0.615 0.865
With Sqgrt. Interaction Terms 0.642 0.787
Reciprocal

Without Interaction Terms 0.548 0.955
With Plain Interaction Terms 0.612 0.965
With Recipr. Interaction Terms 0.623 0.956

overflooding.

Modeling rainy-season yield response

Equivalent to the modeling process of dry-season yieldaesg, in this section we will out-
line and justify the range of explanatory variables, theiohof model for yield prediction,
and finally the results. The dependent variable of the maklrid-use type specific yield
response per square meter, while the yield of the singlesonbgach land-use type is con-

verted to its monetary value, according to average locakprin 2006.

Range of variables

For the choice of the range of explanatory variables foryrai@ason yield, we applied the
same approach as for the dry season: Thus, the yiglg Byny of the rainy-season land-use
types can be formally expressed as a function of clim@jegoil/water conditions$ W) and
management]):
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Table 5.8: Predicting dry-season yield: parameter eséisat

Dry-Season Land-Use Types
Monoculture  Mixed Culture

Variables of Tomatoes  of Tomatoes

Constant -3.025*** 56.619**

llabor(l0Q) 0.641** 1.786**

lchem(l0Q) 1.975%** 1.211*

Psoil fertility (109) 2.345 - 54.041**

Pirr coeff (109) - 0.593** -22.278*

liabor* lchem 0.017 0.012*

labor* Psoil fertility -7.171% -9.908

labor- Pirr coeft 25.421** 28.673

lchem' Psoil fertility -0.001 - 0.004

Ichem: Pirr coeft - 0.003* 0.012

Pirr coeff - Psoil fertility ~ 0.062 6.131*

Size of training data set 46 24

Size of testing data set 15 15

R Square 0.661 0.967

RMSE 4.255 6.504

CV (RMSE) 0.0398 0.0308
Pyield-rainy= f(C,SWM) (5.16)

where the climat€ is regarded as being constant in space, due to the relasinel size of
the study area, but variable in time. Compared to the dryosgdke explanatory variables
representing the soil-water fact@ Y\) and the management factdl} are naturally dferent

in the rainy season, and have to be selected carefully wstheie to the conditions and needs
of rainy-season cultivation.

As such, the water availability required for proper plamwgth in the rainy season is
more dependent on rainfall than on some kind of irrigatioeffocent representing ground-
water availability. Parameters describing both the spatid temporal variation in water
availability due to rainfall need to be considered. The terapvariation in rainfall is repre-
sented by the annual future rainfall as simulated by thedoteernmental Panel on Climate
Change (IPCC) for the study area. The spatial variation iremevailability due to rainfall is
mainly due to the topographical pattern of the area, witlofiuand slope gradients playing
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Table 5.9: Variables for predicting rainy-season yield
Variable Definition

llabor Input of labor (in labor dayay)

| manure Input of manure (Livestock Ind@x?)

Psoil fertility  SOil fertility (as a range from 1 to 5)
Puetness ~ The wetness index, i.e. In{Bopé tan Ryjopg

a major role in water accumulation within the soil. In thiady, we chose the topographic
wetness index to represent this factor of topographica¢metcumulation. Furthermore, in
order to consider not only the spatial variation in waterilatslity, but also the variation in
soil suitability, we included further the discrete variabff soil fertility in the analysis.

With respect to the factor of agricultural management,cadjural labor input plays
a major role in successful cultivation, which includes Igméparation, plowing, sowing and
weeding. It is a natural assumption that an increase in tbe$@ation gforts has a posi-
tive impact on plant growth. Thus, the variable of total lalmput, measured in labor days
per square meter, was included as an explanatory managé&tmtfor crop yield response.
Furthermore, the same as for the dry season, the enhancefseiitfertility through agricul-
tural measures also plays a major role for crop yield respoimscontrast to the dry season,
the use of chemicals and fertilizers for rainfed cultivatio the region is minimal. Instead,
animal manure is widely used to enhance soil fertility. Asétact amount of animal manure
was dificult to measure, this factor is represented by the livestod&x of the household
divided into fractions according to the sizes of the plotd there indicated to obtain manure

during the survey. The input of manure was then defined astbe& index per square meter.

Thus, the productivity function modeling dry-season yiedth be expressed as:

I:)yield-rainy: f(PwetnessPsoil fertility» I manure ! labor R) (5.17)

where RyetnesdS the wetness index g fertility the solil fertility, Inanurethe input of manure,
llaborthe input of labor, and R the annual average rainfall (in/mfhas simulated by IPCC.
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Model choice and results
The first step of modeling rainy-season yield response stasi the development of a spatial
yield-response model based on data of the year 2006, witamdidering rainfall data (as
these are considered to be spatially constant), while irséo®nd step the timely fashion
of crop productivity will be modeled in response to annuatrage rainfall. In order to
select a functional form for the spatial yield model for theay 2006, the R Square for each
functional form and land-use type was calculated (see Talil@), where the land-use type
soybeangpotatoes was omitted due to its small sample size (10 pldtstead, the yield
for this land-use type was set constant at the mean crop hgedd. It is obvious that the
inclusion of interaction terms enhances the predictive gyofer all functional forms and
land-use types (Table 5.10). However, there is a high vanaif the R Square among the
various land-use types for most of the functions, with alhadiSorms having one R Square
below 0.2. Therefore, and in order to be consistent with tleelehfor the dry season, we
selected the functional form that had the most even didtdbwf R Squares among the land-
use types with all values above 0.2, namely the functionattion based on logarithms (see
equation 5.10) with plain interaction terms, which is alabhed the transcendental production
function.

As the input of manurepgnurehad an empirical value of O for many of the cases,
the logarithm could not be taken of this variable. Instetadas embedded in the function in a
linear way. Furthermore, the variable qf&,esdvas already in a logarithmic form, therefore
no logarithm is taken of this variable. The results of thedinregression indicate that some of
the basic variables are significant in explaining crop yrekponse (Table 5.11). Labor input,
soil fertility, and wetness index are all positively relat® crop yield for all land-use types,
indicating that the higher the labor input, water availépiand soil fertility, the higher the
corresponding crop yield. The input of manure is also pediirelated to crop yield for all
land-use types apart from monocultures of cereals. A refsahis negative relation could
be an over-fertilization of this land-use type through manapplication, as monocultures
of cereals, which are usually grown along the river bankgaaly receive large amounts of
nutrients through seasonal flooding. For further convergewe will call the yield calculated
by these factors the spatial yiel#RliaP ;o\ rainy;
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Table 5.10: R square of functional forms for predicting yageason yield

Rainy-Season Land-Use Types
Mono- Mono- Mixed Rice Mixed
culture of  culture of Compound based Groundnut
Cereals Groundnuts Farming Culture  Culture

Linear

Without Interaction Terms 0.243 0.119 0.149 0.141 0.243

With Plain Interaction Terms 0.276 0.156 0.157 0.179 0.261

Logarithmic

Without Interaction Terms 0.373 0.169 0.158 0.250 0.315

With Plain Interaction Terms 0.456 0.215 0.220 0.264 0.321

With Log. Interaction Terms 0.579 0.228 0.191 0.272 0.318

Square Root

Without Interaction Terms 0.392 0.155 0.188 0.213 0.287

With Plain Interaction Terms 0.413 0.170 0.215 0.223 0.302

With Sqrt. Interaction Terms 0.452 0.189 0.203 0.235 0.296

Reciprocal

Without Interaction Terms 0.165 0.093 0.346 0.087 0.243

With Plain Interaction Terms 0.217 0.133 0.443 0.187 0.262

With Recipr. Interaction Terms 0.682 0.198 0.465 0.187 D.26
Spatiapyield rainy = Cobb-DouglasRetnessPsoil fertility- | manure !labop (5.18)

In order to include the temporaffects of climate change on rainy-season crop yield,
in specific changes in annual rainfall, we used a correctotof that modifies the annual crop
yield as calculated by the transcendental production fanctMany studies suggest a linear
relationship between crop yield and rainfall (see Voss8881 Sicot, 1989; Ellis and Galvin,
1994; Larsson, 1996). As such, Groten (1991) identified a&iogiship between crop yield
(in kg/ha) for millet in Burkina Faso and annual rainfall (in mm)jrmeexpressed as:

Cropy = 0.91-R (5.19)

whereCropy is crop yield, andR the amount of annual rainfall. This suggests that crop yield
can be generally described as being directly proportianahhual average rainfall, although
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Table 5.11: Predicting rainy-season yield: parametemedés
Rainy-Season Land-Use Type

Mono- Mono- Mixed Rice Mixed
culture of culture of  Compound based Groundnut

Variable Cereals Groundnuts  Farming Culture Culture
Constant 6.534** 4.540 2.974%*  5.086** 8.306***
liabor (l0g) 0.868** 0.339 0.210 0.613***  0.575 ***
Imanure -4.317 4.830 1.769**  —— 0.117
Pwetness 0.625*** 0.39 0.214** 0.181 0.084
Psoil fertility (109) 0.461 2.823 1.729**  1.924 0.643
Pwetness Psoil fertility - 0.124** - 0.091* - 0.044* - 0.055 -0.017
liabor- Psoil fertility 13.213 1.580 3.102 -0.042 -2.477
Imanure Psoil fertility 1.017* -0.703 -0.227** - 0.181
labor: !manure - 34.907 - 26.897 - 6.096 - 5.518
llabor: Pwetness -4.887* -0.398 1.197 0.056 1.028
Imanure Pwetness 0.070 -0.153 -0.049*** -0.012 -0.034
Size of training data set 51 53 160 82 167
Size of testing data set 30 30 70 45 70
R Square 0.456 0.215 0.220 0.264 0.321
RMSE 1.145 0.710 0.959 1.176 0.754
CV (RMSE) 0.228 0.099 0.176 0.188 0.108

there is certainly a limit to the positivefect of rainfall on yield. But within a reasonable
range of rainfall data, this linear relationship can be rdgd as valid.

Since the empirical productivity functions were deriveshfryield and input data of
the year 2006, these functions are based on the rainfadlrpatt this specific year. However,
due to the linear relationship between average annualatherfid crop yield, the féect of
rainfall of yeart in relation to the year 0 (2006) can be expressed as:

. R
Sp"’lt"”lpyieId-rainy' @ (5.20)

F)yield-rainy:
whereR! is the average annual rainfall in mm for the y&aR® the rainfall (in mm per year)
for the year O (base year 2006). As such, an increase in layf&.g. 20 % in relation to
the base year would result in an increase in yield by 20 % ibter input factors remain
constant. This is in accordance with the assumption of alimelationship as suggested
by the studies as mentioned above. With the help of this emuand the transcendental
production function, the yield response for a specific yean be calculated.
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5.2.3 Modeling livestock dynamics

The model of livestock dynamics simulates the populatiolivestock within the study area,
being expressed by the livestock index of local householgdeddc The model is based
on the following two assumptions: The annual decrease oease in the livestock index is
randomly dependent on the livestock index of the previows,yend the total number of all
livestock must be below or equal to the carrying capacityhef study area with respect to
forage availability.

The first assumption of a random dependence of the livestatski of two subse-
guent years can be expressed as:

t1H vestock @9 = round(™Hjivestock - olivestock+ raNdoM(2 - Tivestock) (5.21)

wheretHjjestocf@Ndis the randomized livestock index at time stepndajiyestockthe stan-
dard error of the empirical data set of the livestock indexuBing this equation, the livestock
index in the current year lies randomly within a rangetofjestockaround the livestock in-
dex of the previous year. For our purposes, this random agpres the most robust and
straightforward method to model variations in livestocg,the stock of animals within a
household is dependent on manyfelient factors, which are fiicult to model, such as birth
and death rates, diseases, sale, or the delivery of animgifisifor funerals.

However, regardless of the small variations of the stocknahals within a house-
hold, the upper limit or carrying capacity for livestock irspecific area can be regarded as a
restricting factor for the whole animal population. Thisrgang capacity is directly depen-
dent on the availability of natural resources, includingavand forage; we will only take into
account the forage availability, as no related studiesctbalfound to reliably model water
supply of local dams (which are the main source of water famats). Stéphenne and Lam-
bin (2001) provide a model for determining the relationsbgiween livestock population
and biomass production undeff@rent rainfall patterns. The related equation is expreased
follows:
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BiomPy- Pasty = Liv - BiomC (5.22)

whereBiomPyis the biomass productivity in tonnés, Pastd the pastural area in hay, the
livestock population in equivalent tropical livestock ufiiLU), andBiomCthe consumption
in biomass in tonng$LU. TLU is a conventional stock unit of a mature zebu weighb0

kg (Boudet, 1975). One TLU corresponds to one cattle, onsehdive asses, 10 sheep or
10 goats. Following this equation, we can calculate the rerrobTLU the area can sustain
under normal conditions if we knoBiomPy Past andBiomC. According to Le Houérou
and Hoste (1977), biomass productivity in Sudano-Sahegjrasslands highly depends on
rainfall. This is described by the following statisticalaonship between dry matter biomass

and rainfall, taken from ground measurements by Breman aitl(1983):

BiomPy= 0.15+ 0.00375 R (5.23)

whereR is the annual average rainfall in mm of the current year. Asriscenarios of
variable rainfall data are fed into the modBipmPycan change over timePast;, the area
in ha of pastural land is calculated from the land-cover amdi{use pattern of the current
year. As it is common practice that the leaves of groundmgsidged by local farmers for
animal fodder, the area of forage productivity Pastd, dadsonly comprise patches with
the land cover grassland, but also patches covered by gnatibased land-use types. This
area comprising both grassland and groundnut cultivatapdated in each time step of the
model, thus also leading to a variable outcome of biomasdyatority. However, and this
is the major drawback of this model, the dietary requirenpamtTLU (BiomC) is regarded
as being constant at 4.6 tonpfye=ar (see Stéphenne and Lambin, 2001). This assumption
implies that under drought conditions, the biomass consiemper livestock unit does not
decline. However, related literature did not provide eations of consumption behavior of
livestock in relation to drought pressure.

According to these values, the annual carrying capacitgundrmal conditions can
be calculated in TLU for each year. If the number of animaisT{LU) exceeds the carrying

capacity, the animal population will be reduced by a factmhsthat the population is equal
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to the carrying capacity. Following this mindset, we define annual livestock index per
household as a restriction to the variablétdH;y s/ @"daccording to the carrying capacity
of TLU and the current number of total TLU:

o [ tHivestood@nd t if ICC > T LUipta
livestock = tHIivestockrand' T |_CUC if ICC < T LU0t

‘total

(5.24)

wherelCC is the carrying capacity in TLU at time stépand!T LU,y the total number of
TLU in the study area at time stép'T LU,y is calculated as the sum of TLU per household.
In order to give reasonable figures for this number of TLU pmudehold, we decided to set
this number proportional to the livestock index, which ipesssed as:

HlHy = —t+1H"V€ska'tHTLU (5.25)
livestock
wheretHr y is the number of TLU for the household in time stepin order to solve this
equation for alfH1_, the initial value oPH+_y is calculated from the empirical data set. This
equation ensures that the number of TLU per household in geahreflects the livestock
index in the respective year.

This model of livestock dynamics has two purposes. Firstalitulates household
livestock numbers (livestock index) in dependence on amairaall and land-use behavior,
and second, it provides an estimation on whether the lickstarrying capacity of the study
area is reached, thus giving an indicator of the possiblgelaof overgrazing. Overgrazing
can be defined as grazing by a number of animals exceedingiheng capacity of a given
parcel of land. Although this model assumes that the cagrgapacity is never exceeded by
the total number of livestock, the model indicates that graering is possible if the carrying
capacity is reached.

5.2.4 Land-cover transformation model

This routine models the natural changes among land-copestin both seasons, which are
beyond of human control. The range of land-cover types cm®aprforest’, 'water’, 'bare
land’, 'grassland’ and 'cropland’ (section 5.3.1), whex#ze land cover of grassland is absent
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in the dry season, where the climatic conditions are sudigtiaas does not survive or grow.
For both seasons, the land-cover types of water and foresiardeled to be stable, i.e.
they do not undergo any changes, as the small patchy renwfdotrest remain traditionally
untouched. The task is, therefore, to analyze the changes@ggrassland, bare land and
cropland for both seasons.

As climatic conditions in the dry season hamper cultivadind natural grass growth,
most of the area is covered by bare land, apart from the smiglhied patches, which are
mostly located along the river banks. Therefore, the végiabdry-season land cover does
not comprise the land-cover type of grassland, and is uddateach time step+ 1 in the

following way:

forest  if Peoyer grywas forest

cropland if the patch is used in time stép- 1 during the
1P overdry={ 0P iy o o g (5.26)

bare land if the patch is neither covered by forest or water,
and not used in time stepr 1 during the dry season

In the rainy season, the land cover of bare land usually sqvaiches that are not
fertile enough to allow cultivation or grass growth. Theref a conversion mechanism from
bare land to other land-cover types for the rainy season wasansidered. Furthermore,
the modeling of conversion of grassland or cropland to kemd through erosional and other
processes was beyond the scope of this study. Thus, thectmi-type of bare land was
considered as being stable within the model, i.e. it doesindérgo any change (like forest
and water).

This way, the land-cover transformation model in generd) cegulates the natural
conversion between grassland and cropland. This way, treatibns of conversion have to
be accounted for: the conversion from grassland to croplkand the conversion from crop-
land to grassland. The conversion from grassland to crdpkunegulated by the Decision
Module, in which a procedure allows the agent to use grassheatfor cultivation under
certain conditions, whereas the rule for the reverse daeaf conversion is dependent on
natural grass growth. It is assumed that if a patch has not beed for a certain period P
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neither in the rainy nor in the dry season, it will be steadibyered by grass, and thus be
converted to the land-cover of grassland. This peRpde. the number of yea® a patch
needs to be covered by grass, was set to 1 through discussioloeal experts and farmers.
This way, the update of the variable of land cover for theyaaason is expressed in the
following way:

forest if Peover rainywas forest
water if PPcover rainywas water
cropland if the patch is used in time stép- 1 during the
H1Pcover rainy= rainy season (5.27)
bare land  if tPcoyer rainywas bare land
grassland if the patch has not been used during the last two
seasons
5.3 Summary

This chapter gave an overview on the biophysical conditmfrthe study area, determined
the spatial pattern of these conditions, and developedfgpeiophysical sub-models operat-
ing in response to these conditions, land use and socioeedenndicators. The biophysical
attributes considered include land cover (for both segstoographic attributes (e.g. eleva-
tion), proxy variables (e.g. distance to river), soil, amdundwater data. The spatial pattern
of land cover was identified for both seasons, based on an RSfiage using unsupervised
classification and ground truth data collected in the studg.alhe methodology and sources
for the development of spatial maps for local soil-waterdibans were presented, including
the soil attributes of soil fertility and texture, groundemlevel and recharge, and the topo-
graphic attributes of elevation, slope, upslope conthilguérea, and wetness index. Finally,
variables of spatial accessibility were determined, idelg distances to main river, dams
and the national border in the north. Justifications for theeaf these variables were given in
the respective sections.
A further spatial variable that had to be determined was #r&@ble of irrigability

Pirrigable Which required the development of a specific irrigabilitpatel, as corresponding

data were not available. This model is based on a land-slityadnalysis approach for
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irrigation as provided by a related study by the FAO (FAO,398n accordance with this
study, a range of factors was identified to explain irrigabih the study area and, based
on these factors, an irrigation d@ieient between 0 and 1 was calculated for each patch by
using m-logit regression, with 1 indicating highest poksitrigability. A threshold for the
irrigation codficient to define a patch as irrigable was finally determined.

The role of biophysical sub-models was then to define theymibdty of the var-
ious land-use types, to regulate the population of livdstand to determine the conversion
of one land-cover type to the other. As biophysical as weklaistic factors played a role
in local crop productivity, both household (e.g. manuretilfeer and labor input) and envi-
ronmental variables (e.g. soil fertility, wetness indexXdrevincluded in the models for yield
response. Dierent functional forms for predicting crop yield were tekstand the functional
form with the highest R Squares for thdfdrent land-use types was selected, being the tran-
scendental production function. The strength of this fiomcts its ability to represent the
combined €&ects of explanatory variables, as it integrates interactesms between each
pair of variables. Productivity of the land-cover type oagsland was further determined in
order to calculate the carrying capacity of the livestocgydation, which served as a restric-
tion factor for the model of livestock dynamics. Finallyetprocess of land-cover conversion
in the study area was analyzed, and a respective updatedpired®r rainy-season as well as

dry-season land-cover type for each patch was developed.
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6 SCENARIO ASSESSMENT OF LAND-USEHCOVER AND LIVELIHOOD CHANGES
IN THE ATANKWIDI CATCHMENT

6.1 Introduction

In the face of a constantly changing world, proactive lanchagement is needed to find
successful strategies for mitigating the adverse impaictdJ&€C, to avoid decisions with
negative externalities on the human-environment systehi@anhance the sustainability of
the system’s functioning. As itis widely acknowledged tii@inage once done to the environ-
mental system is very flicult to undo, the far-reaching consequences of land-manege
decisions need to be assessed before measures are takefulAad for providing a knowl-
edge base for such informed decision-making in proactivé lmanagement and planning is
the simulation-based assessment of the evolution of theleddhuman-environment system
in response to selected policy interventions. Based onaghysoach, a wide range of pos-
sible future outlooks can be generated, providing a basis/formed decision-making and
discussion among policy-makers.

Traditional approaches designed to simulate the complthag of LUCC often
lack this ability to reliably project alternative pathwayfsthe human-environment system of
land-usg¢cover change. This is partly due to the fact that many of tlapgeoaches are only
capable of projecting one timeline into the future. Foramske, statistic LUCC models are
only able to project a single future timeline of land-(es&er patterns, as they are mostly
based on transition probabilities extracted from obsehistbrical data. Furthermore, the
range of models available to explore future otulooks has bieeited due to their inade-
quate representation of the human-environment interoelstiips. At one extreme, some
LUCC models tend to ignore the explicit roles of human acdtotee changing of landscapes
(Huigen, 2004; Veldkamp and Verburg, 2004). The weaknefisi®kind of models thus lies
not only in the lack of an assessment of future socio-ecoaamicators, but also in the lim-
ited ability to represent the direct impact of policy intemtions on human land-use behavior.
At the other extreme, many bio-economic models tend to treahuman influence as the
main driver of LUCC, and are thus weak in assessing the ro@nefonmental impacts on
human land-use behavior (Verburg et al., 2004). These mdHat often ignore the direct

links between environmental conditions and land-useedlaterventions, thus limiting the
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ability to explore future impacts of policies on the envinoent.

Multi-agent-based models, on the other hand, have beegmezsal to be well suited
to exhibit the co-evolution of the human and landscape systieased on the interactions
between human actors and their environment. Furthermoedjrtkages of policy interven-
tions and other external environmental or socio-econoattofs to the human as well as to
the landscape system can liEeetively designed, as the bottom-up approach of agentdbase
modeling allows the modeling of the direct consequenceobfypinterventions on house-
hold behavior and landscape attributes. GH-LUDAS in paldic was designed to explore
future outlooks of LUCC and other socio-economic indicatas a consequence of selected
policy options and other external factors.

The application of simulation-based scenarios is usuaBnsas a useful tool to
identify the variety of such possible future outlooks anditmlerstand the consequences of
selected input parameters on the performance of the sySeanarios are accounts or syn-
opses of projected courses of action, events or situatanbare widely used to understand
different ways that future events might unfold. Unlike cladgicadictions, scenarios are
not necessarily accurate forecasts of single future tmaslidrawn on past data, but multi-
ple possible future pathways of the system evolution undgregtrum of initial conditions
(Maack, 2001). The main purpose of such scenario developsidrus to stimulate thinking
about possible occurrences, assumptions relating theserences, possible opportunities
and risks, and courses of action (Jarke et al., 1998). Meretwy identifying basic trends,
stakeholders can construct a series of scenarios that @l them to compensate for the
usual errors in decision-making, i.e. overconfidence anddlvision (Schoemaker, 1995).
Models that allow the simulation of user-defined scenarfqsoticy interventions can serve
as useful decision support tools for involved stakeholdgush tools should be user-friendly
platforms in terms of their operation and the disseminadiath visualization of model results,
with the aim to enhance communication among the model anaisigs), and among policy-
makers and other stakeholders. Multi-agent simulationet®obave been recognized to be
able to meet these conditions, in particular the agentebBistlogo environment in which
GH-LUDAS was programmed. Visual formats of NetLogo, sucteasgporal calibrated maps
and time-series graphs, and a user-friendly interfacevahe use of GH-LUDAS as a deci-
sion support tool. Possible future scenarios the user vwamtgplore can be easily simulated,
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analyzed and communicated.

In this chapter, we present simulations of selected scenarith GH-LUDAS, an-
alyze the reasons for their way of performance, and comratmitie corresponding results.
However, to enhance communication of model results to ktakers, the interpretation of
the simulated pathways of selected scenarios should ngtbengrounded on the analysis
of data and internal model mechanisms, but should also lhed/e@do 'narrative storylines’,
which are easier to convey to local stakeholders. It is ingrdrthat these storylines are con-
sistent with data generated by the model as well as with tnagrabservations during field
work and other related studies. The quality of scenari@thatudies is dependent on the
reasonability of processes involved, which can be gengtayemental models in a narra-
tive manner, or by formal models in a quantitative way. Eamimfhas its own merits and
limitations, and an fficient scenario description should therefoffeoways to integrate the
narrative and quantitative traditions in a particular bata(Kemp-Benedict, 2004).

Based on this background, the objectives of this part of thdyscan be summarized as

follows:

1. Based on the specifications of the theoretical framewGHapter 3 to 5), to develop
an operational GH-LUDAS model with the functionalities alecision support tool to
support impact assessment of selected policy options dal external factors.

2. To identify and simulate integrated scenarios of the tEmipuman-environment sys-
tem using GH-LUDAS.

3. To provide an overview of the future pathways of these @des and an interpretation
of these results in the form of narrative storylines baseduantitative analysis of the
system functioning and field experience.

In the following, policy, climatic and demographic condits in the study area will
be described, which serve as a basis to justify the seleofi@xternal parameters of GH-
LUDAS to be modified by the user. Based on this selection, #mge of scenarios to be
explored is presented. The subsequent section deals witmfflementation of GH-LUDAS
as a decision support tool, describing the mode of modelatiper, methodologies of output
visualization and transfer, and the operation of the maueliace. Finally, the scenario pa-

rameters are specified and the temporal evolution of seleetevant performance indicators
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of land-us¢cover change and local livelihoods are analyzed and irgeggr

6.2 Selection of user-defined parameters in GH-LUDAS: Landise policies, demogra-
phy, and climate change

In the predominantly smallholder farming systems of the &igpast Region in Ghana, liveli-
hoods are directly dependent on harvestable crop yieldsseasonal basis. The constraints
to sustainable production are the dry spells during the girgpseasons, low fertility of
farmlands, and farming practices that exacerbate ffexts of drought and low soil fertil-
ity (CGIAR, 2000). The coping strategies resulting fromsaeagroclimatic factors put a
severe brake on investment and financial accumulation. dgiem’s physical isolation, lack
of non-agricultural investments and underdevelopmentarkets result in few opportunities
for economically meaningfulfé-farm employment or income generation (Whitehead, 2004).
The most recent agricultural polices in Ghana to tackle phablematic situation
are reflected in the Accelerated Agricultural Growth and &epment Strategy (AAGDS),
the Food and Agricultural Sector Development Policy (FA$IDEand the Upper East Re-
gion Land Conservation and Smallholder Rehabilitationdatd LACOSREP) (IFAD, 2005).
These projects broadly aim at the intensification and maogation of agriculture, income
diversification, and improvement of market access. The agreultural policies that consti-
tute these national and regional strategies include fudbeelopment of riverine irrigation,
rehabilitation and construction of dams, farmer training dissemination of new technolo-
gies, stimulation of the engagement in income-generattiygites through credit, and an in-
creased provision of infrastructure (IFAD, 2005). The pobion of irrigation through farmer
education and improvement of irrigation facilities aimsiraproving food security in the
'lean season’, and the stimulation of trade markets thrangreased income and demand
for local products (Birner and Sdfer, 2005). Farmer training, meant to be implemented by
local NGOs and the local branches of the Ministry of Food agd@ulture (MOFA), focuses
on the promaotion of high-yielding varieties, improvemehstorage facilities, conservation
measures to reduce yield losses due to soil erosion, andwagranimal care. Further-
more, these organizations are also involved in the processlecting and advising farmer
groups that seek to apply for bank credits. These credit@afmancing crop production and
agriculture-related small-scale enterprises, mainlgetad to women heads of households
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(IFAD, 2005). Greater investment in rural infrastructuuels as feeder roads and marketing
facilities aim at linking remote rural areas with high protian levels to agricultural markets,
thus providing enhanced marketing opportunities for iasheg incomes (MOFA, 2002).

However, many of these measures fail or have failed due tfiamat implemen-
tation or lack of finances in large parts of the region. Desfong years of development
assistance, many communities remain poor, vulnerable affiek rom regular food short-
ages (Blench, 2006). In the Atankwidi catchment, the sedlle dams, which had been
built to a large part in the 1970s, are silted due to miscanttbn and thus can not be used
for irrigation, and new dam construction projects underribes development programmes
have not been implemented. MOFA, which is in charge of fartrening and education,
seems to have had minimal contacts with local farmers, agid davice has not seemed to
have any impact on local agricultural methods, choice opsror livestock care. Further-
more, only 5 % of the women groups in the study area that agpdiecredit were finally
successful, which was observed to be due to high bureauteels and lack of staon the
side of MOFA.

In spite of these low levels of policy implementation, it seethere is agreement
about the necessary interventions on the side of policyemsakHowever, there is a high
uncertainty and lack of a knowledge base about the humaineament interrelations and
the policy impact on these relationships. The actual camseces on land-use and social and
economic welfare of any of these measures are not well kn@eganario-based simulations
could assist stakeholders in focusing their financial resggion policy measures that yield
the highest returns in terms of long-term income securityeguity. Therefore, with respect
to the study area, we extracted those policy interventioaisdeserve a closer look in terms of
their applicability and impact. The first strategy, the potion of riverine irrigation farming,
does not seem to be an issue in the catchment, as most ofigfablerland is already claimed.
With respect to extension services, including farmer etlocaand training either carried
out by NGOs or MOFA, statistical analysis showed no impactmp choice, agricultural
techniques or input, livestock survival or crop yield. lesged thus that even higher levels
of farmer contact would not show reasonable improvemenlisimg standards or changes
in land-use or land-cover. Similarly, with respect to istracture, the proximity to feeder
roads or marketing facilities did not significantly influenbousehold decision-making or
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local marketing opportunities. The study area is alreadyiged with a relatively extensive
net of feeder roads, and market places are accessible froogiout the area on foot or by
bicycle. Thus, the strategies which deserve closer attertie dam construction, as there is
the ability and need among farmers to expand their irrigahiosiness, and increased credit
access, as statistics suggest a high relationship betweeit provision and improvments in
income levels.

However, decision-makers might not only be interested éndfects of their poli-
cies on local land-use and livelihood, but also in the fupathways caused by other factors.
Reviews of the most significant changes that the region agkfduring the next decades com-
prise most importantly demographic changes and climataggaDue to climatic changes,
the region experiences short and erratic rainfall, whicadly afects food and livestock pro-
duction (GNADO, 2000). The high population of the regionnether factor that contributes
to food insecurity and the poverty. Land holdings in the sagare so small that food pro-
duced on one cannot sustain a family up to the next farmingose@GNADO, 2000). Based
on this reasoning, the following four families of scenangere identified: i) construction of
small-scale dams, ii) increased credit access, iii) pamuiarowth, and iv) rainfall changes
derived from the main four IPCC climate scenarios.

Policy of rehabilitation and construction of small-scale aams
Many small-scale irrigation schemes based on earth damdwgmlits exist in the northern
part of Ghana. Out of these, many were funded under World Baojects (including the
Upper Region Agricultural Development Project - URADEP}he 1970s. The majority of
small-scale structures have broken down over time due torpamtenance and resulting sil-
tation problems (Gyasi, 2004). Several donor agenciegrgovent organizations and NGOs
are involved in the rehabilitation of these schemes and ehstecuction of new ones, which
are to be managed by farmers. Indeed, close to 90 % of refaddii small schemes are
successfully controlled by farmers (Dittoh, 2000). The onaghabilitation schemes in the
Upper East Region have been conducted by the IFAD-funded Camservation and Small-
holder Rehabilitation Project (LACOSREP), under which @aftef 44 dams and dugouts
were rehabilitated (IFAD, 2005).

The ultimate targets of the provision of communities witlgiation infrastructure
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include the &er of possibilities to local smallholders to engage in ealiion during the
lean season, diversify their income structure, give ingestfor increased marketing activity
through raised cash income, and provide facilities fordieek watering and fishery (Birner
and Schifer, 2005). However, few irrigation infrastructure facdg were completed and
functional on project closure, making itficult to assess their impact properly (IFAD, 2005).
A second question arises from the viewpoint of profitahilig. whether the obtained benefits
from improved irrigation infrastructure really justifyetrelatively high costs of dam rehabil-
itatioryconstruction, or whether other policy measures are mffteéient and cost{ective.
Therefore, an assessment of the long-tefimats of irrigation scheme development on living
standards and land-use and land-cover is of great impa@&tanc

A second policy measure with respect to the final use of satalle dams is the ap-
plication of area limitation. Our hypothesis is that thigotency of operational dams in terms
of income equity can be increased by limiting the area a faisallowed to irrigate around
dams. This might allow more farmers to benefit from irrigatiofrastructure, and reduce the
number of farmers that share large parts of the irrigablasacé the scheme. Although we
do not have any notice of the application of such a policy gspnt irrigation schemes in the
Upper East Region, the investigation of theets of this hypothetical policy measure could

lead to interesting results for local stakeholders and mege authorities.

Policy of credit schemes

In an attempt to alleviate poverty and empower poor peopdynNGOs and government-
line agencies have been providing credit to rural women imyrdistricts of Ghana. The
essence of these credit schemes is to help the rural po@cialp women, earn a decent
living through their on-going income generating actist{@&nsoglenang, 2006). It was real-
ized that women have assumed certain household respatiessitihat were formerly men’s
gender roles, such as providing money and other materialiress for housekeeping. These
added responsibilities have given rural women a rare vaibeusehold decision-making pro-
cesses (Ansoglenang, 2006). Credit schemes are intendediptéthese women to increase
their engagement in a number of income generating acsyitreluding trade, shea-butter
extraction, rice milling, pottery, local restaurant sees, and alcohol brewing (Ansoglenang,
2006), and to expand these activities to small-scale emsegp The promotion of such small-
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scale enterprises through credit schemes may help snadihobuseholds to reduce risks and
their dependency on agriculture through income divergioacreate additional income, and
stimulate marketing activity. Several case studies hayehasized the success of such credit
schemes in terms of household assets, economic activityhenedmpowerment of women.
However, rates of credit provision still remain low in thgi@n, due to lack of sthand com-
mitment on the side of the implementing agencies.

Population growth

Rapid population growth and low economic standards of §yiave had consequences for
agricultural land resources in the Upper East Region (Beramel Agyepong, 1990). Fal-
low lands have been reduced or eliminated, and there hasrmbagsive migration of mainly
the youth to the urbanised, mining and forest areas in soutBhana (Codjoe, 2004). The
results of the agricultural land availability status (Gmelj 2004) shows that three selected
districts, namely, Bolgatanga, Bawku East and Kassen&denlocated in the Upper East
Region, would experience agricultural land shortfall ie year 2010 as a result of pop-
ulation growth. However, projections of annual populatgzowth rates often lack reliable
databases of past population trends and an understandimg dynamics of migration strate-
gies (Boadu, 2000). Although the dynamics of the singlediscbirth, death and migration
rates are poorly understood, the observed (total) popuagowth rate has been estimated
to 3 % in the rural Upper East Region. However, the capacithede rural areas to sustain
growing populations is limited. As land availability anddteced land productivity are con-
sidered as drivers of out-migration and ultimately as lingitfactors for population growth
as suggested by (Codjoe, 2004), a straightforward apprieablus to define population dy-
namics on the basis of the carrying capacity of the study. afebogistic function, which

is defined by the annual growth rate of 3 % and the total pojuumlatarrying capacity (see
Chapter 3), was used in GH-LUDAS to calculate annual pofmuiahcreases for the study
area. Based on this, the model allows the simulation fiédint settings of the population
carrying capacity and an assessment of their consequendesad household behavior and
land use.
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Climate change

The Upper East Region, which is mainly a rural area with sufmid conditions lying at
the southern end of the Sahel, could Eeeted by climate change in terms of increased
land degradation, declining agricultural productivitydachanging land-use and livelihood
strategies. A comparison for the region between the radisfalation in the middle of the
20th century with the period 1970-1990 reveals a major dknaeterioriation, but also that
after the late 1980s the situation improved again until @@71drought, which was generally
seen as problematic (Dietz et al., 2004). However, locahéas who were interviewed in
the study by Dietz et al. (2004) saw a lot of evidence of lomgrt climate change, and have
already been reacting to it. Changes regarding the onseatdfiashortening of the rainy
period has urged farmers to change the composition of tiveiiHood portfolios by relying
more on non-agicultural sources of income, by adding moreketariented agricultural
crops (tomatoes, onions), and by changing their food pribalustrategies to more drought-
resistant varieties (Dietz et al., 2004).

It is therefore an important issue to understand the meshabetween household
decision-making and scenarios of future climate condgja@specially changes in rainfall
patterns. To test household-based reactions to changedlgrecipitation, we derived long-
term data of annual precipitation changes for the studyfaoeathe IPCC Data Distribution
Centre (www.ipcc-data.org), and linked them to functiofdiomass productivity as pro-
posed in the study by Groten (1991) (see section 5.3.3).€liexipitation scenarios rely on
the four basic global climate scenarios as presented byPGEISRES (Special Report on
Emissions Scenarios), named Al, A2, B1 and B2, which covada vange of driving forces
from demographic to social and economic developments. fhaa precipitation reduction
for these scenarios amounted to 2.87 fywar for the Al, 0.36 myigear for the A2, 2.84
mnyyear for the B1, and 2.48 mfyear for the B2 scenario. Based on these values and the
current average annual precipitation, the annual pregipit (mnjyear) for each scenario
was calculated and used for calculating forage availghiéguation 5.23) and agricultural
productivity of rainy-season cultivation (equation 5.20)
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6.3 Developing an operational GH-LUDAS for policy decisiorpurposes
6.3.1 Methodology

The GH-LUDAS theoretical framework (Chapter 3) was prograed in the NetLogo pack-
age 4.0.2. NetLogo, which is a freeware provided by Wilen€l§99), is a multi-agent
modeling environment, whichfters both a convenient language to programme agents (and
their interactions) and tools to visualize and export rssulrhe NetLogo environment con-
sists of two main pages between which the user can switchieseeved for the programme
code, and a second, the model interface, which allows thmgetf model parameters and
the visualization of results. GH-LUDAS is thus a conveniglattform for decision-makers,
as they can easily choose among options, set parametergsandutput graphs and maps on
the interface page without necessarily understandingdbece code. The procedures pro-
grammed in the code interface follow a schematic annual-toop (section 3.6.2), starting
with the updating of the population, followed by the rousrfer the dry and rainy season,
and ending with the visualization and export of selectedskbold and landscape data. These
routines were verified separately as well as in combinatienthey were examined whether
they work the way they were intended to.

The output of model simulations, which may serve as a basdgi$oussion among
stakeholders, does not only depend on the specificatiorteeahbdel routines, but also on
model input data. Such input data comprise data and paresyibst have been calibrated by
the modeler, and external parameters that are defined byéne u

Input data of GH-LUDAS

Data that are defined by the modeler comprise calibrated ifga, including spatial (GIS)
data, household data, and specific parameters, mainlyitatioodficients that have been
extracted from quantitative analyses in case studies (€hag and 5). The household and
GIS datasets were needed to initialize the coupled humadstape, while the parameters
were needed to specify various internal routines of the moBecause good-quality data
are used to validate in part the MAS model, all data used byLGIBAS had to be cali-
brated antbr processed outside the model to adequately represergdhty of the coupled
human-environment system. Methodologies for procegsatigratingclassifying data from
different sources, organizing the household-pixel datasgs@antific approximation of rel-
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evant data for use are discussed in detail in Chapter 4 and 5.

In contrast to these data, user-defined parameters arel@tte¢a be set externally
by the user. These parameters comprise policy-relatedygiexphic, and climate parameters,
which enable the users to set their own options for scenateldpment. Policy-related op-
tions include the specification of the location and irrigatcapacity of dams, and the annual
percentage of households provided with credit, wherebypéinis given to choose between
a revolving credit scheme and the current (normal) schep®gsction 3.5.2). Furthermore,
the growth rate and carrying capacity of the population a6 agea specific IPCC climate
scenario can be defined.

Ouput of GH-LUDAS

The strength of the NetLogo programming platform, and of BBDAS in particular, is its
provision of a set of very informative outputs. For any tinkepsof the simulation, including
two season-wise simulation steps per annum, three typestpéibare produced: a spatially
explicit map of land-use and land-cover, graphs, and sphesats of predefined indicators.

Land-use and land-cover map

The land-use and land-cover map is depicted in the viewehefNetLogo platform, and
displays dry- and rainy-season land-as®er patterns in sequence in order to reflect the real-
world temporal fashion in which land-ysever changes occur annually. With the help of the
NetLogo functionality 'export-viewer’, values of each phof the map can be exported at
any of the two annual time steps in any year of simulation. deétqal files of these spatially
explicit maps enable experts to conduct sophisticatedpre&ations of the simulated land-
usecover patterns.

Digital images and graphs

A digital map interface was designed to enable the user tgatzamong dierent landscape
attributes by clicking the corresponding buttons. Thiswa#l users to visually link changes
in land-us¢cover to important landscape attributes such as elevatiope, distance to river,
village territories, etc. Furthermore, real-time changgzedefined indicators are visualized
in graphs, e.g. average household income, percentagesddbiite types within the catch-
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ment, etc. Data underlying these graphs can be exportextifilés for each time step during
simulation for further analysis and interpretation.

Predefined indicators

In each time step, indicators predefined by the modeler grerted to text files to serve as
a basis for further analysis of the performance of the syst@mvide range of indicators
of households and the landscape are concurrently savegingainom average income from
and labor input to all income-generating activities of hehusds, over livelihood-strategy in-
dicators and the Gini Index, to average crop yields of laageagents, and land-ysever
performance. Adding or modifying selected indicators isasy task if such needs arise on
the side of the user.

6.3.2 Results

The user interface of the model comprise the following congmds: i) User’s input param-
eters and a navigation bar for landscape attributes (paytar(d (3) in Figure 6.1). ii) a
real-time map of land use and land cover (part (2) in Figuig, @&nd iii) time-series graphs
of predefined indicators of the coupled human-environmgsiesn (parts (4) to (14) in Figure
6.1). In Figures 6.2 to 6.7, the parts of the interface arectieghin detail.

By pressing the top three buttons of the input parameterBath{e landscape and
the household agents are initialized, and the simulatioseglential annual time-loops is
started. Below, parameters of population growth can be setually by sliders, including
the carrying capacity of the number of households in thehraént, and the annual growth
rate. By pressing the 'draw-dam’ button, dams can be indéntéhe viewer by mouse click,
whereby the dam'’s irrigation capacity needs to be defined dlider. Below, the maximum
area a dam user is allowed to cultivate can be set. Below arerddit-related settings, in-
cluding a slider to regulate the annual credit access ptgerof the population, a switch to
choose the credit scheme and a regulator to define the timtdnteof the revolving credit
scheme if this option is chosen. The next four buttons allatching among initial land-
usegcover patterns in 2006 and simulated (final) patterns tolerthle user to identify sub-
stantial changes visually. The last option allows the ahatrainfall scenarios, including
'No Climate Change’ and the four IPCC rainfall scenarios.
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Figure 6.1: Model interface of GH-LUDAS
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The navigation bar (3) allows the user to map major envirartalettributes in the viewer,
including village territories, topography-related véies (e.g. elevation, wetness index),
soil attributes (e.g. texture, fertility), groundwatevdéand recharge, and proximity-related

variables (e.g. distance to river).

45 ticks:0 ﬂ

Figure 6.2: Viewer (Part 2) of model interface

The time-series graphs include two major blocks. The firstkkomprises graphs
of indicators of the performance of the biophysical langscsystem (see parts (4) - (6) and
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Figure 6.3: Input parameter bar (Part 1) of Figure 6.4: Navigation bar (Part 3) of model
model interface interface

(11) - (24)). Graphs (4) and (5) monitor changes in the cayed the four main land-cover
types for each season, while graph (6) depicts changes ootleage of the six rainy-season
land-use types (LU 1 - LU 6), and the two dry-season land-ysest (LU 7 and LU 8). A
legend for these land-use types is attached on the righbsidhe interface. While this latter
graph only monitors the percental changes of land-use tygpastal cropland area, graphs
(11) and (12) display the actual area of these land-use tygdesctares.

Graphs (13) and (14) finally show the performance over timaveirage yield in
kg rice’ha and kg tomatodsa for rainy-season and dry-season land-use types, resggct
Based on information of average yield and spatial exteri@tkingle land-use types as mon-
itored by the latter four graphs, the total crop productionthe catchment can be easily
calculated for each season.

The second time-series block of graphs comprises the gfapimonitoring changes
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Figure 6.5: Land-ugeover graphs (Parts 4 - 6) of model interface

in the human system, parallel to the changes in the naturdstape system (see parts (7) -
(10)). Graph (7) shows trends in changes in gross househotdrie for both seasons sep-
arately, and graph (8) displays the equity of householdrres) in terms of Gini Indices of
income distribution for both seasons separately and in aaatibn. Graphs (9) and (10) show
the average income structures in each season, depictiqpgtbentages of each of the seven
major income-generating activities of total gross houtimcome. These trends allow an
interpretation of changing livelihood strategies.

This user-friendly interface will allow stakeholders testtehe combined conse-
guences of selected user-defined parameters on the laedasagell as on the population
level. An interaction loop may develop between the usersthedmodel, by improving
the knowledge of thefkects of interventions and natural and demographic changekeo
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Figure 6.6: Income-related graphs (Parts 7 - 10) of modeliate
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coupled human-environment system. Furthermore, thefaueiof GH-LUDAS may enable
users to develop scenarios that can be used as case studigthfer analysis and interpreta-

tion.

6.4 Definition, simulation and analysis of selected scenas
6.4.1 Methodology

According to the identified range of land-use-related feecand policies (section 6.2), the
specific scenarios to be tested were systematically defméallaws:

1. The policy and global settings as in 2006 are considered#seline scenario. This
scenario assumes no rainfall or demographic changes ahokewised as a baseline for
evaluating the impacts of changes in land-use policies #met dactors.

2. Given the baseline settings, each single pagiopal factor will be shifted from the
baseline to form a scenario spectrum of the consideredrfacdher policyglobal
factors are kept the same as in the baseline scenario. Eabhssanario spectrum
consists of 2 to 4 single scenarios, which will enable idgimg the sensitivity of this
factor to socio-economic indicators and land/aeeer performance.

The diferent policy scenarios of each scenario spectrum are bdefigribed below:

Baseline scenario

The baseline scenario (S0) has the policy setting as in 20B&h is the base year of the
simulation. According to statistics from the Ministry of &@ and Agriculture (MOFA) in
Navrongo, about 1 % of the households obtained credit eveay gluring that time. As lo-
cal dams were not operational for irrigation in the studyaar® dams were inserted within
this scenario. The information about past demographicstita provided by the Ghanaian
Statistical Service was too limited to serve as a basis t@patate future changes in local
demography. Thus, for the baseline, the number of housglottde catchment was assumed
to remain stable. The potential consequences of an inched&seisehold population will be
separately analyzed within the demographic scenario. Im#éas vein, annual rainfall was
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assumed to be stable in this scenario, at a level of 1100 m@anpem.

Scenarios for assessing the impacts of dam construction

Usually, variations in the location, size and number of tartsed dams need to be considered
in the policy of dam construction. However, as it is impreatito test all possible scenarios,
we focused on variations in total available irrigable arEar this, we varied the number of
dams, all having the same irrigation capacity of about 2dtdres, which is a reasonable
value for small-scale dams in the Upper East Region. Althoug are aware of the fact that
the selection of the dam location underlies hydrologicalsiderations on the side of policy-
makers and contractors, we did not apply such a selectiacepsato identify suitable loca-
tions, but assumed a random distribution of dams througtheutatchment. This procedure
is justifiable, as prior simulations had shown that variaio the specific locations of these
dams did not show a significant influence on the socio-econordicators or land-ugeover

at the level of the populatigoatchment. Following this mindset, we defined three scegari
with a random distribution of 20 dams named the S-Dam20 stermd 30 dams (S-Dam30),
and of 40 dams (S-Dam40). All other settings were kept theesasior the baseline scenario.

Scenarios for assessing the impacts of improved credit acse

This scenario spectrum consists oftdient settings of annual credit access, while other pa-
rameter values are identical with those for the baselineao® The term annual credit
access denotes the annual percentage of households that ofedit, whereby the amount
of credit is fixed to 200 000 Ghanaian Cedis (about US $ 20)ckvig the usual amount
granted to applicants in the study area. To test the seitgitif’output values to increased
ncredit access, three scenarios were defined, a perceritdgeé (5-Cred4), 7 % (S-Cred7),
and 10 % (S-Cred10). These values express a gradual chaegedihcoverage by a 3 %
stepwise increase, based on the current value of 1 % in tleit@scenario.

Scenarios for assessing the impact of area limitation undedtam construction

This scenario spectrum explores the impact of area limnatnder a policy of construction
of 30 dams. The scenarios include an area limitation of ®@S-Lim900), an area lim-
itation of 1800n? (S-Lim1800), and no limitation (S-LimNo). The latter scenahas the
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Table 6.1: Global-policy settings for scenario developtnen
Quantitative Settings

Dam Construction Credit Access Demography Rainfall Change
Scenario Number Area Annual Carrying Annual. Scenario
of Dams Limitation Credit Capacity Growth
(m?P) Access (%)  (Households) Rate (%)

Baseline Scenario (with policy settings of 2006)

SO (Baseline) 0 - 1% 6400 3% No Change
Scenarios for exploring the impacts of dam construction

S-Dam20 20 - 1% 6400 3% No Change
S-Dam30 30 - 1% 6400 3% No Change
S-Dam40 40 - 1% 6400 3% No Change
Scenarios for exploring the impacts of area limitation

S-Lim900 30 900w 1% 6400 3% No Change
S-Lim1800 30 1800 1% 6400 3% No Change
S-LimNo 30 - 1% 6400 3% No Change
Scenarios for exploring the impacts of credit access

S-Cred4 0 - 4% 6400 3% No Change
S-Cred7 0 - 7% 6400 3% No Change
S-Cred10 0 - 10 % 6400 3% No Change
Scenarios for exploring the impacts of population growth

S-Pop7200 0 - 1% 7200 3% No Change
S-Pop8400 0 - 1% 8400 3% No Change
S-Pop9600 0 - 1% 9600 3% No Change
Scenarios for exploring the impacts of rainfall change

S-ClimAl 0 - 1% 6400 3% Al
S-ClimA2 0 - 1% 6400 3% A2
S-ClimB1 0 - 1% 6400 3% B1
S-ClimB2 0 - 1% 6400 3% B2

same settings as S-Dam30, and the former two scenarios exigtd from this base sce-
nario in their value for area limitation. Finer incrememtsarea limitation were not possible,
as the spatial resolution of GH-LUDAS is pixel of 30 m x 30 m kimg up an area of 900¢.

Scenarios for assessing the impact of fferent population carrying capacities

In this scenario spectrum, the impact of increases in pdipualaizes on socio-economic in-
dicators and land ugeover is explored. Local population growth is simulated togy liogistic
S-shaped growth function, which is defined by an annual droate and a population car-
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rying capacity. In all scenarios, the annual growth rate setgo 3 %, which is the current
observed value in the study area, while the population oagrgapacities were set to totals
of 7200 (Scenario S-Pop7200), 8400 (S-Pop8400), and 96@€eholds (S-Pop9600).

Scenarios for assessing the impacts of reduced precipitati

This spectrum covers four single rainfall scenarios, basethe simulation of scenarios de-
veloped by the IPCC Special Report of Emissions ScenariBESJ, namely the Al, A2,
B1 and B2 storylines (see section 6.2). Data on long-termm@és in annual rainfall have
been derived specifically for the study area, ranging frorararual reduction in precipitation
of 2.87 mm (Al), over 2.84 (B1) and 2.48 (B2) to 0.36 mm (A2).eH™ingle scenarios for
simulation in GH-LUDAS were named after their original SRE8ne.

6.4.2 Results

Each scenario was run 5 times for 30 timesteps (years), aat r@ues: and uncertainty
ranges ft — Clogs, u + Clgos], whereClgos is the radius of the 95 % uncertainty intervall,
were calculated from the generated data for each scenarithelsubsequent analyses, we
will focus on those indicators that showed a significant geaduring time angr showed

a dependency on external (e.g. policy) settings. Changksdhcover and land use in the
rainy season and their dependency on global-policy setiveye analyzed, as well as mean
gross household income for each season, and the Gini Indhéch wescribes the skewness of
income distribution among the population. To analyze tHeal®r of income classes within
the local society a further single-run simulation was eatrout to derive behavioral values
for the high-income class, the medium-income class andaweiricome class, which are
separated by 0.5standard deviation of annual gross income. With respeard tover in
the dry season, no changes in the composition of land-cgpestcould be observed, mainly
as irrigated cropland in this season had almost reachedaxsnmum spatial extent during
the base year 2006. The same is valid for the choices betweemb dry-season land-use
types, where no significant down- or upward trends could Iseted for the selected scenar-
ios. Therefore, in the following scenario analyses, thedeson of indicators of dry-season
land-use and land-cover patterns was omitted. Insteadhanonportant trend regarding
dry-season land-use could be observed, i.e. a change iruthber of farmers practicing
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irrigation, and subsequently changes in the average fedlyarea per (irrigating) household,

which were also significantly influenced by policy interiens.

Baseline scenario

Before analysing the impacts of selected external factodspmlicies, the temporal pefor-
mance of the baseline scenario needs to be analyzed in ordedérstand the general trend
of land-usgcover change and related socio-economic indicators. Tdgslme will then be
used to compare the performance of the subsequent scenathiohat of the baseline sce-
nario. In this baseline, the mean gross household incomeased both in the dry and the
rainy season (Figure 6.8 a). In total, the increase in meanargross household income
increased from 15.9 million Ghanaian Cedis to 1:6.6.05 million Cedis during the 30-year
period, which was observed to be mainly due to two factorsstRihe productivity per land
area was increased in the rainy season, and second, ansing@artion of household la-
bor was dedicated to the more profitable activity of tradim@poth seasons. In average, the
percentage of income generated by trading acitivitiesiaeed from 9.9 % to 1440.24 %
during the observed period. The higher productivity leueldhe agricultural sector were not
caused by a process of intensification or higher yields, lsuewa result of a continuing shift
to more profitable crops (or land-use types).

While in 2006, 45.7 % of the land-use types consisted of gilauty and rice-based
systems, which are regarded as cash crops due to their hidtetalale value, the portion
of these cash land-use types increased to 52238 % at the end of the 30-year period.
Although this shift to more market-oriented activitiegy(etrading) and crops is the result of
many interacting factors, it can be genereally said thatttieind is caused by an alternation
of generations, as the young generation tends to be moreot&stied and aims at reaching a
higher labor éiciency in terms of a labor-income relation. This observatitso matches the
impression in the field, where both old and young farmers weéogmally interviewed about
their individual income strategy and land-use tendendesther factor observed during the
field study was the reluctance of many young farmers to engelg@rd agricultural work, as
many of them preferred other less labor-intensive strageglich as seasonal migration. This
observation matches the decline in total agricultural amgle rainy season (Figure 6.8 c),
which decreased from 61.5 % of the total area in 2006 to 8856 % in 2036. This decline
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Figure 6.8: Baseline scenario: Simulated land/amer and socio-economic changes.

f) Percentage of irrigation farmers

Source: Simulation results with GH-LUDAS
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is supported by the fact that the household labor pool destic® agriculture was up to 10
% lower among the younger generation.

Although these processes lead to a general increase irgavie@me, the equity in
income distribution among the population, described byGie Index, seems to deteriorate
(see Figure 6.8 b). During the observed period, the annoakgncome of the wealthier part
of the population (with income mean incomer 0.50, whereo is the standard deviation)
increased by 34 %, while that of the poorer part (with incommean income - 0.5 )
decreased by 36 %. We found that this increasifiggdéntiation of gross income is partly due
to an increasing inequity in land availability. This proses due to the fact that households
falling into the lower-income class usually have many mdfepring that those of the high-
income class, which leads to the partitionment among mamgritents of land that is already
small in size. Among high-income households, the situasanverse. Household land is
usually extensive, and its division usually does not leddnad shortages among the already
few inheritants.

With respect to dry-season land use, the baseline scerfawessa decrease in the
proportion of irrigation farmers of total population fron®.3 % in 2006 to 16.3 0.11 %
in 2036 (Figure 6.8 f). This implies that the limited irridatarea is being divided by a con-
tinuously decreasing number of farmers, which is also refteby an increase in average
irrigated area per farming household. The reason behisdpttuicess is the increasing use
of pump irrigation technology, which allows the irrigatiohlarger areas, in comparison to
the use of wells (bucket irrigation), where water has to baumdy distributed. Within the
16-year old history of irrigation farming in the study aréamers started with buckets, but
in 2006, 40 % of the area was already irrigated by pump tecgypWwhich will, according
to the scenario, increase to nearly99.14 % in 30 years.

Impacts of the policy of dam construction on land-usgcover and socio-economic status
In this scenario spectrum, the sensitivity of a dam consitsagolicy on land-usgover and
socio-economic indicators is tested. For the dry seasarage gross household income
is highly sensitive to the number of constructed dams (FEdu®), resulting in a simulated
average dry-season income of 5¥2.04 million Ghanaian Cedis in 2036 for S-Dam40,
as compared to 4.74 0.03 million Cedis for the baseline scenario. The additiomsome
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generated in the dry season is due to a clear shift from naotdigiral activities to irrigation
farming. The analysis of simulation results reveals th#t@baseline scenario only 320.42

% of the income is generated by cultivation in the dry seaatrereas in S-Dam40 this value
amounts to 46.% 0.14 %. This additional income does not seem to be reinvastazh-farm
activities such as trading or aftsafts, but merely in an extension of cultivation actistie
especially in the dry season. Although there is a generabugvend in the involvement in
such income-generating non-farm activities, the increég@sactice of irrigation farming does
not seem to have a positive influence on this trend. Furthexpaalditional income generated
by irrigation farming does not seem to be invested in casppingy during the rainy season
either, as the cropping pattern is not sensitive to changdam numbers (Figure 6.9 e) and
the uncertainty ranges overlap: According to the simutetian 2036 about 52.6 0.33

% of the cropland is used for cash crops for S-Dam40, whilefithee is similar for the
baseline, being 52.2 0.38 %. This low &ect might be due to the fact that households
practicing irrigation farming usually reinvest their ptdfito this business, as this activity is
usually more profitable than non-farm businesses such@isgrar cultivation of cash crops.
This behavior is in accordance with field interviews, whiekigal that profit from irrigation
farming is partly reinvested in irrigation, and partly ugedget over the lean season. For
the same reason, there does not seem to be any positive c€loenincome generated in
the rainy season (Figure 6.9 a), which in 2036 amounts to £108196 million Cedis for
S-Dam40, and 11.2 0.175 million Cedis for the baseline scenario.

The Gini Index describing the equity level of income digttibn is partly posi-
tively influenced by the policy of dam construction. Whiletla¢ end of the first half of the
simulation period the Gini Index is lower for S-Dam40 (0.48®.004) than for the base-
line scenario (0.5 0.004), the values seem to converge at the end of the simlpériod
(Figure 6.9 c). The single-run simulation to assess thel Ismeaiety structure reveals that
for S-Dam40, the average simulated income for the low-ineatass (with income& mean
income - 0.50-, whereo is the standard deviation) decreases during the simulagoiod
by only by 25 % as compared to 34 % in the baseline scenaride idri the middle class,
this value is 9 %, as compared to 14 % in the baseline. In otleedsy the process, which
is leading to an increasingly skewed income distributiam be slightly dampened by this
policy intervention. Although it is diicult to identify the reasons for this improvement in
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Figure 6.9: Dam construction scenarios: Simulated largfcaser and socio-economic
changes (see Tables A.1 to A.6 for means and uncertaintgsang
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income equity due to the model’s complexity, two factoraséaplay a major role. First, the
availability of operational dams has a much higher impadhenshare of irrigation farmers
in the poorer class than that of the bettéraass. Although the involvement of the poorer
class in irrigation practices is generally low, the supplthvrrigation infrastructure resulted
in a 10-fold increase of the percentage of irrigation fasranong this group from 0.5 % to
5 %. The middle class experienced a 2-fold increase (frorfa #bto 32 %), while the share
of irrigation farmers among the betteff@lass increased only slightly. This extreme bias is
caused by the fact that i) dam irrigation is generally a lmstdusiness that allows it to be
practiced among low-income farmers, and ii) the majoritpetter-dt farmers who share the
interest in this business is already practicing it. Secpodsible reason for an improvement
in the income equity can be found in the correlation betweegated land and rainfed land
available to the households. The increasing involvemetiitenrrigation business, especially
among lower and middle class farmers, seems to havéfact @n their share of cultivated
land in the rainy season. The increasing bias in land avhiladmong the population as de-
scribed in the baseline scenario is alleviated by the imgut@bility of the lower and middle
class to rent additional land in the rainy season due to amoweyl financial situation. This
trend of a higher tendency for rainy-season cultivationhmadso be reflected in the increased
portion of cropland for the S-Dam40 scenario (Figure 6.91d)2036, for the baseline sce-
nario the percentage of cropland amounts to 55.8676 % while the value for S-Dam40 is
56.81+ 1.02 %. Although the percentage of cropland seems to betlglighnsitive to the
policy of dam construction, the significance is low, as theautainty ranges of these two
scenarios overlap.

Furthermore, the policy of providing irrigation infrastture in the form of dams
can stabilize the declining trend of the share of irrigatemmers of the total population (Fig-
ure 6.9 f). In the baseline scenario, the percentage ohiitg farmers decreases from 29 %
to 16 + 0.1 % during the simulation period, in comparison to the gdtar S-Dam40, which
is 27.6+ 0.7 % in the final year 2036. Thefect of dam construction on the percentage of
irrigation farmers is significant for all four scenariosyhmy an average uncertainty range of
+ 0.55 %. While the baseline results in larger average aresshiited among a declining
number of households, thifect is clearly alleviated in the dam-based scenarios. Afjho
irrigation farmers used to have larger cultivated areabénbteginning due to increased land
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availability, the upward trend is not as pronounced as inbdegeline scenario. This might
be due to the fact that in comparison to the baseline, a smadition of farmers has the
financial capacity to expand their irrigation businesshasd is a relatively high involvement

of low-income and middle class farmers.

Impacts of area limitation under the policy of dam constructon on land usgcover and
socio-economic status

In this range of scenarios, the policy of area limitationgstéd on land-use and livelihood
performance. This limitation area, which is set to 960 1800’ and unlimited size, refers
to the maximum area a household is allowed to irrigate in théndge areas of local dams.
The target of this secnario spectrum is to assess whethbraspolicy would increase the
equity in income, due to an increased equity in irrigablellamong local households. The
Gini Index, however, gives a complex picture of this intesh@&ect. While the Gini Index
is lowest for the S-Limit900 scenario (Figure 6.10 c), whishexpected to be due to an
equal distribution of 900r? land per household, the Gini Index for a limitation of 1808
seems to exceed that of the scenario of no area limitatior2086, the Gini Index for S-
Limit1800 is 0.5+ 0.008, while that for S-LimitNo is 0.49% 0.008 and for S-Limit900
this value is 4.8% 0.004. The uncertainty range of S-LimitNo overlaps withshof the
other two scenarios, while S-Limit900 and S-Limit1800 halstinct uncertainty ranges.
Therefore, we will only attempt to analyze the causes bethiisdatter difference. However,
as the system modeled is very complex, and a reliable asaf/this behavior is beyond our
analytical capacities, we can only analyze the causes sfcthmplex behavior to a limited
extent. The assumption we can give is that land that is maaiahle in the S-Limit1800
scenario seems to be mainly occupied by the high-incomes.claso processes related to
the diference in the Gini Index between S-Limit900 and S-Limit18@0e identified. First,
the single-rune simulation shows that in 2036 the percentdgarmers belonging to the
middle class is highest with 65 % for the S-Limit900 scenawhile it is lowest with 59
% for the S-Limit1800 scenario. Accordingly, the perceegf the lower and high-income
classes are higher for the latter scenario, leading to arased income gap and thus a higher
Gini Index. Second, average incomes within these classegehto the disadvantage of the
lower and middle income class. This process is worsenederSthimit1800 scenario as
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compared to the S-Limit900 scenario. Furthermore, theam isvident relationship between
this difference in income and theffrence in the allocation of irrigable (dam) areas. While
the upper class claims only 28.5 % of the irrigable (dam) arétae S-Limit900 scenario, this
value amounts to 32 % in the S-Limit1800 scenario, to theddiaatage of the middle class.
This process seems to be in accordance with our assumpabmtnly better-& farmers
benfit from the implementation of an area limitation of 1860

With respect to average income, the policy of area limitatioes not seem to have a
significant influence. Average gross income generated idhseason in 2036 is highest for
S-Limit900 (5.5+ 0.047 million) while it is lowest for S-Limit1800 (5.42 0.053 million).
This dfifference, although not significant, might be caused by thetli@atta higher fraction
of households is involved in irrigation (3050.62 %), compared to 25 % in the other two
scenarios). In the rainy season, households seem to coaipdns their lower dry-season
income in the S-Limit1800 scenario by investing in cash srapd an extension of rainfed
area (see Figures 6.10 d and 6.10 e). In 2036 for S-Limit1&0D560.3 % of land is crop-
land, of which 53.1+ 0.7 % is cultivated with cash crops, while for S-LimitNo thigures
are lower, i.e. 54.& 0.6 % of land is cropland, and out of these 52.1.0 % are cultivated
with cash crops. For 2036, thisftérence in household behavior results in a slightly higher
rainy-season income for the S-Limit1800 scenario (200157 million Cedis), as compared
to the S-NoLimit scenario (11.8 0.256 million) (Figure 6.10 a). To summarize, a signifi-
cant diference in income equity (Gini Index) can be induced by thlgcponvhereby &ects
on land use and average income are minimal and cannot besdatlifie to large uncertainty
ranges. Possible further simulations could help to reduisdével of uncertainty.

Impacts of the policy of credit access on land-ugeover and socio-economic status
According to local data and interviews conducted in the wiaieba, most given credits are
invested in trading activities, which is the most profitatisiness apart from irrigation farm-
ing. Credits are usually given to women, and as trading isntya women’s domain in
contrast to the male domain of irrigation farming, womerdtemstart or expand their trading
businesses. Since trading can be practiced throughoutetre gdditional income is gener-
ated in both seasons (see Figures 6.11 a and 6.11 b). Forah23&6, average rainy-season
gross income amounted to 11490.176 million Ghanaian Cedis for the baseline scenario,
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Figure 6.10: Area limitation scenarios: Simulated landamver and socio-economic
changes (see Tables A.7 to A.12 for means and uncertainggsan
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while for the S-Cred10 scenario this amount reached astmg4.9.6+ 0.383 million Cedis.
In the dry season, the situation is similar, but less prooedr{Figure 6.11 b). The S-Cred10
scenario led to an average gross dry-season income af @.g03 million Cedis in 2036, in
contrast to 6.1+ 0.08 million in the baseline scenario. The uncertainty esnfpr all four
scenarios were distinct for both seasons.

The most remarkable point here is that income seems to be maohsensitive to
the policy of credit access than to that of dam constructisrescribed above. Credit access,
as the much cheaper policy intervention compared to théledtenent of dam infrastructure,
seems to have a much higher impact on income generation. Auaaoredit access percent-
age of 10 % would result in a maximum total annual expendibfitdS $ 12.800, under the
assumption that none of the credits are settled, which iswagalistic assumption in an area
where nearly 95 % of the credits are repaid. The construdfatams on the other hand
would cost millions of US $, which poses the question whetlueh a policy is costfiective
and dficient enough to be justifiable. However, from the viewpoihincome equity, dam
construction might be regarded as the more desirable enéon in terms of the equity in
income distribution, as represented by the Gini Index. bapments in credit access in the
study area have the unfavorable characteristic of leadirggher income inequity (Figure
6.11 c). For 2036, the Gini Index in the baseline scenariouants.495: 0.008 as compared
to 0.513+ 0.003 for S-Cred10. This increased inequity is reflectedrbinareased income
gap between low-income and high-income farmers. The singiesimulation showed that
in the S-Cred10 scenario the high-income class was able te than double their average
annual gross income during the simulation period, whilddleincome class could increase
their income by only 3 %. This skewed pattern may be causedhdyncreased ability of
the high-income class to invest in highly profitable actdst(e.g. irrigation, trading), com-
pared to the lower class, which is usually not involved irsthbusinesses and often reliant
on low-profit activities (e.g. arfsrafts).

In the long term, correlations among income generated byfaion activities and
agriculture suggest that profit made from investments isdlaetivities is reinvested not only
in the same activities, but also in irrigation farming andlcaropping. While in 2036 for
the baseline the percentage of land cultivated with caspsciothe rainy season amounted
to 52.2+ 0.38 %, the S-Cred10 scenario resulted in a significantlizdrigpercentage (56.9
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+ 0.99 %) (Figure 6.11 e). A significant change in cropland watsobserved (Figure 6.11
d), as the dierence between the baseline scenario and S-Cred10 is 16Wo)0and the un-
certainty ranges overlap. The reason might be that inctleaeelit access only seems to give
an incentive to modify the cropping pattern, but not to edtéarmland in general. Further-
more, the improved financial situation of local householesegated by cash cropping and
non-farm activities seems to be an incentive with respeicivmvement in irrigation farming.
The decreasing trend in the number of irrigation farmersgsicantly alleviated by credit
access improvement (Figure 6.11 f), as in 2036 26811 % of households are engaged in
irrigation farming, while the value is as much as 19.6.72 for S-Cred10. This ffierence is
due to the fact that many farmers now cdfoed going into this business. These farmers usu-
ally prefer the low-cost alternative bucket irrigation,iathis also reflected by corresponding
data of irrigation technology use. In the S-Cred10 scend®d2+ 0.03 % of the irrigated
area is still irrigated by buckets in 2036, while the valuetfee baseline is only & 0.01 %.
This process of the involvement of irrigation newcomers aésiuces theféect of increasing
average irrigated area, as the proportion of bucket iipgatvhich allows the cultivation of
only small areas, is higher than in the baseline.

Impacts of rainfall change on land-us¢cover and socio-economic status
In this family of scenarios, thefiect of changes in rainfall is tested on system performance,
where the annual changes in rainfall represent the four IBRES scenarios, Al, A2, B1,
and B2. A2 is the scenario with the least reduction in annaiaffall, followed by B2, Al
and A2 in this order. From the results (Figure 6.12), it islewit that the system performance
changes between the B2 and Al scenarios (e.g. Figure 6.1@ Eigare 6.14), although
their annual rainfall reduction values are close. The tesalthough not significant in terms
of uncertainty range overlap, suggest that a slight chaagerigger a readjustment of the
system’s functioning. In the following, we will analyze tdata behind this sudden system
change between the B2 and the Al scenario.

What is remarkable is the fact that average income fromvatian is lowest for
B2 and highest for A1, although reduction in average anraiafall is similar, i.e. 2.87 mm
for A1 and 2.48 mm for B2. That is, theftirence in annual reduction is only 0.39 mm,
amounting to only 12 mm ¢lierence after 30 years, which is the simulation period. Hanev
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Figure 6.12: Rainfall change scenarios: Simulated largicaoser and socio-economic
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it seems that this small reduction triggers a changed sys&ravior. Although this change
of system behavior can be hardly analyzed due to its contgleatileast the general causes
for this increased cultivation-based income can be stdtegeneral, increased income from
cultivation is due to i) higher yields, ii) the cultivatiorf smore valuable crops, or iii) and
extension of cropped area, or a combination of these. Aslyiate even lower for the Al
than for the B2 scenario (e.g. Figure 6.13), the income garplust be caused by a shift to
more valuable crops or an enlarged cropping area. Althowgsignificant, results suggest
that both mechanisms seem to be activated in the A1l scenari®036, the percentage of
cropland cultivated with cash crops is 52:71.2 % for A1, while the value is only 52.0
0.6 % for B2. Accordingly, the percentage of cropland isdaiig the A1 scenario with 55.8
+ 0.93, as compared to 5490.92 % in the B2 scenario. This tendency might also be one
of the causes for the slighlty higher average income duhegainy season, which is 1240
0.296 million Cedis for A1, as compared to 117.195 million Cedis for B2 (Figure 6.12
a). As far as income equity is concerned, a sligtifedence in Gini Index in 2036 can be
observed between the Al scenario (8.6.008) and the B2 scenario (0.494.004) (Figure
6.12 c). The single-run simulation revealed that the higbier Index for the Al scenario is
caused by a thinning of the middle class, resulting in lafgetions of high- and low-income
farmers. The more subtle reasons for this mechanism coulbdencevealed due to the high
model complexity. Irrigation activities did not seem to lfEeated by decreases in rainfall
(e.g. Figure 6.12 ).

Impacts of population growth on land-us¢gcover and socio-economic status

In this scenario spectrum, the impact offdrent population carrying capacities on land-
usgcover and socio-economic indicators is explored. As vigadlin Figures 6.15 a and
6.15 b, higher numbers of total households seem to have diveegaluence on average
household income, in the dry as well as in the rainy seasorthdrS-Pop9600 scenario,
average rainy-season income amounts to #0D®58 million Ghanaian Cedis in 2036, while
the value for the baseline scenario is higher (31.®176 million Cedis). The situation in the
dry season is similar, with a seasonal average gross incbomdya3.83+ 0.026 million Cedis
for S-Pop9600 in 2036, as compared to 4+@.03 million Cedis for the baseline scenario.
In both seasons, this declining trend is mainly related tedide in average cultivated area,
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as cultivation is by far the most important contributor taieehold income. For the whole
simulation period, the percentage of rainy-season incaneigted by cultivation reached as
much as 77.5 and never fell below 70 %.

Average cultivated area in the rainy season showed a deftbne 15400n? in
2006 to 10 40G: 89 n in 2036 in the S-Pop9600 scenario, whereas in the basekmaso
this amount is only reduced to 13 980188 n¥ in 2036. Given a similar situation in the dry
season, in both seasons limited available land was idehtdibe the main cause of this trend.
While in the dry season most of the irrigable land had alrelaglyn put under cultivation
before 2006, arable land in the rainy season still seemed available, but remoteness and
large distances were supposed to impede their cultivation.

Results also suggest a higher trend of the Gini Index for tpufation-based sce-
narios in comparison to the baseline (Figure 6.15 c), beidg3+ 0.008 for the baseline and
0.5+ 0.012 for S-Pop9600, although théfdrence between these two values is not significant
due to overlapping uncertainty ranges. However, this tisnohderpinned by the single-run
society composition analysis among the three income dassdefined above. While in the
S-Pop9600 scenario, average annual income of the higlmi@ctass experienced an increase
of 16.4 % during the simulation period, the values for the dted and lower-income class
were negative. The reason for this inequity can be tracek tmaihe increasing bias in land
tenure between the low- and high-income class for the ptipnkbased scenarios. While the
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Figure 6.15: Population growth scenarios: Simulated lasgizover and socio-economic
changes (see Tables A.25 to A.30 for means and uncertaimggsa
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rainfed cultivated area among high-income householdsiredatable in the simulation pe-
riod, the area for households from the low-income classadesgd dramatically. This extreme
bias might be caused by the same mechanism as describeddagtwption of the baseline
scenario above. Farmers at the lower end of the income gagly$iave more fspring
and much less land than those at the upper end, which resudtsevere fragmentation of
land in this lower class, whereas the relatively abundant & better-é& farmers is usually
divided among a few number of inheritants. Increasing pajorh numbers thus amplify this
mechanism.

Due to this lack of available land, the scenario spectrumvsliathat local house-
holds found strategies to reduce their dependency on atitiiv, especially among house-
holds of the lower class. Cash cropping did not seem to betamative (Figure 6.15 e) as
the diference of % land cultivated by cash crops did not vary sigaitly among the sce-
narios (i.e. 52.2- 0.38 % for the baseline scenario and 52.6.94 % for S-Pop9600). The
lack of incentives to invest in cash cropping might be causethe low level of land avail-
ability and the fact that many households remain partharglon subsistence crops, leaving
little land for cash cropping. As far as the trend of croplamdhe S-Pop9600 scenario is
concerned, the general decreasing trend in rainfed ardegeibdseline scenario is overlain
by an upward trend in the population-based scenarios, damséhe increasing population
size (Figure 6.15 d). For all four scenarios the results myeifecant in the sense that their
uncertainty ranges are distinct.

According to the population-based scenarios, increasedlptbon numbers auto-
matically led to a significantly lower fraction of irrigatidarmers (Figure 6.15f), being 11.4
+ 0.31 % for S-Pop9600, while being 16+30.09 % for the baseline. Thisfi&rence is
mainly due to the fact that the irrigable area, which hadaalyebeen almost fully reclaimed
in 2006, can only sustain a limited number of households. siihgle-run society composi-
tion analysis for the S-Pop9600 scenario showed an extraift@sthese households to the
high-income class during the simulation period, which finaliltivated 55 % of the irrigated
area, but only accounting for 13 % of the population. The eot@tion of the irrigation
business in the upper class caused by the increasing incamalgp led to an accelerated
spread of pump irrigation technology, as the percentagewtaomers from the lower classes

remained low.
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7 SUMMARY AND CONCLUSIONS

7.1 Summary

Land-use and land-cover change (LUCC) is a world-wide phresrmn, with one third to one
half of the terrestrial surface already transformed by huaions (Vitousek et al., 1997).
LUCC is further an integral part of global and local webs ofieznmental processes, be-
ing related to processes such as the hydrological cycteatdi change, land degradation and
biodiversity loss. These processes may result in changgieloral and local land and water
resources, having immediate consequences for farmingeholds who directly depend on
the natural resource base. This interplay between huma&mnacind the natural resource
base is a vulnerable system, which is why a proactive instéadeactive land management
approach is needed to avoid damage to the ecosystem in &dvahe understanding and
anticipation of future land-use and land-cover change cawige a basis for such proactive
land management, by trying to find strategies to mitigatereiadverse impacts and possibly
improve the sustainability of resource use. However, ssidn LUCC processes are often
challenged by their complex nature and unexpected beha¥iboth human and environ-
mental drivers. The aim of this study is therefore to developntegrated local model for a
small-scale catchment in Upper East Ghana that enablesypuolikers and other stakehold-
ers to explore alternative scenarios that can improve livedihoods and their interplay with
the environment.

The first chapter of this thesis generally clarifies how thergidpased modeling ap-
proach can be a useful tool to capture the complexity of LU@&E@sses, and why we used
this approach for our purposes. First, the terminology di{ase and land-cover change pro-
cesses is introduced, followed by an outline of typical LUQGcesses (e.g. deforestation).
The description of these processes give a first insight leabomplex nature of LUCC pro-
cesses, which is then further analyzed in detail, includiegproblem of scale dependencies,
socio-ecological heterogeneity, interdependencies grsgstem components, and emergent
properties. The analysis shows that the complex natureeofdlipled human-environment
system poses great methodological challenges for LUCC hmgd&o analyze the capability
of current LUCC modeling approaches to capture this conitglehe most common model-
ing traditions are described, including a detailed analgétheir ability to represent fierent

215



Summary and conclusions

aspects of the complex behavior of LUCC systems. Based sratfalysis and our aim to
develop a small-scale decision support tool, it is finalbyued that the agent-based modeling
approach is the most suitable approach for our purposes.

The next chapter is dedicated to the conceptualization @fatient-based model,
named GH-LUDAS (GHana - Land Use DynAmic Simulator), whicitl serve as a basis
to project alternative pathways of LUCC into the future.sEithe concepts underlying the
multi-agent based approach are clarified in order to unaledghe further steps of model con-
ceptualization and model implementation. Agent-basedeatioglin general aims at describ-
ing systems as being composed of an environment and ageatedoin this environment,
which are endowed with automous reactive behavior templatel relations among each
other. Based on this multi-agent philosphy, the concegtaatework for simulating LUCC
is proposed, in which the human population and the landseagieonment are represented
as self-organized interactive components. The biophlysysiem is considered at the level
of landscape agents, i.e. heterogeneous land patcheshwitlotvn attributes and ecological
response mechanisms with respect to environmental chamgelsuman interventions. The
human system is considered in terms of household agentsheterogeneous farm house-
holds with their own characteristics and decision-makirechanisms regarding land use.
Interactions between household and landscape agents memuily through tenure relations
and a perception-response loop. The perception-respoogéivolves information flows be-
tween households and patches. The information flowing froosbhold to landscape agent
reflects the decisions made by the household regardingdaaadn the patch (e.g. labor in-
put, land-use type, etc.). The information flowing from el household includes changes
in the biophysical state (e.g. land use, land cover) andehefits the household derives from
its decisions (e.g. yield). These changes and benefits guéated by the internal ecological
response mechanisms of the single patches. Apart from thamand environmental com-
ponents of the system, a third component is integrated jstomg of the external parameters
regulating policy options and other macro-drivers, whiagiectly influence system behavior
through modifying household ajai patch attributes.

In Chapter 3, the theoretical specification of GH-LUDAS idlioed in detail, on
the basis of the general conceptual framework previoudine. For this purpose, the GH-
LUDAS framework is divided into four main modules that reggat the main components of
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the coupled human-environment, i.e. the Human, the Detisiaking, the Landscape, and
the Global-policy Module. The Human Module defines speciébdvioral parameters and
patterns of farm households (i.e. human agents) in landleisision-making according to ty-
pological livelihood groups. The Landscape Module chames individual land patches (i.e
landscape agents) with multiple attributes and biophysiatural processes representing the
dynamics of crop yield, livestock and land-ys®ver transitions. The Global-policy Module
consists of the architecture describing how policy andratk&ernal parameters are integrated
in the HumayLandscape Modules. Finally, the Decision Module, althoaghntegral part
of the Human Module, is discussed separately, due to its toatgd architecture, which
integrates household and environmental information iatawiuse decisions. This chapter
provides a transparent model description, such that tleenat mechanisms can be easily
retraced. The speecations of the model thus focused on the system architeataseribing
the set of variables for each module and their interlinkaged the system implementation,
including an outline of the simulation protocol for this hitecture.

The fourth chapter is dedicated to the specification andiclon of the decision-
making sub-models. The choice of variables used for thelsersmdels needed to be based
on field experience, mental models to avoid biases in variablection, and literature de-
scribing typical variable-process relationships. To supghe justification of the range of
variables used, a detailed description of local living doads and agricultural behavior is
given. Based on this information and the livelihood framewproposed by Ashley and
Carney (1999), meaningful indicators describing th@edences in typical local livelihood
typologies are identified. It is a common assumption thatdJase decisions are related to
the livelihood strategy of a farming household, thus thedity of agents regarding land-use
decisions can be achieved by a categorization of these sagentgroups, each having an
individual livelihood strategy. This categorization wasreed out in two sequential steps,
starting with a Principal Component Analysis (PCA) to comekethe range of selected liveli-
hood indicators into a smaller set of 'core variables’, dmased on this core set, a k-mean
Cluster Analysis (k-CA) was applied to derive categorical$ehold groups.

The decision-making sub-models represent choices amagetie sets of options
(e.g. choice among land-use types, choice of irrigatiohrnietogy), consisting of multi-
nomial logistic regression models, based on selected hoig@nd landscape attributes.
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The codficients for these models were calculated for each householppgeparately using
statistical methods. Thefiiérences in cdécients represent the preferences of a particular
group towards certain options of choice, thereby refledtaxgeneral livelihood strategy. The
multinomial logistic regression models were implemente@H-LUDAS by using selected
household and landscape variables and the group-wiser@nete cofficients, to calculate
probabilities for each land-use choice option for each Bbakl. Furthermore, a routine
was programmed to reallocate households to specific holssghaoups in each time step,
based on the livelihood indicators as previously specifissithe values of these indicators
among households can change during time, this routine esdlguseholds to change into
that group that best represents their livelihood stratédgys changing their general land-
use preferences. The methods used for this household @ecmsking study could capture
considerable heterogeneities in land-use choice beharidmrigorously parameterized these
heterogeneities. In general, households choose land $sel lwan the considerations of a
range of personal characteristics, natural conditionfi@fenvironment, and particular pol-
icy factors. The developed model of land-use choice thusiges a basis for coupling the
human and the environment system under particular policugistances when simulating
land-use changes.

In Chapter 5, we present the calculated and derived spéitiiddiaes of the study
area, and the specified and calibrated ecological sub-moéellowing a detailed description
of natural and biophysical conditions of the landscape, aldb@ted the heterogeneous land-
scape environment using GIS-based analysis and digitizgd nBecause the path-dependent
nature of land-ugeover changes requires careful and accurate calibratiandfusg¢cover,
current land-useover data were extracted from fine-resolution satellitages (ASTER),
based on ground-truth points collected in the study areah EEndscpae agent was subse-
guently assigned a land-ysever type based on the extracted map, representing tleeiistat
the base year 2006. Other environmental features wereeddfiom existing databases and
digitized maps such as topography, soil classes, groumduetel, and proximity variables
(e.g. distance to river). All attributes were assumed toaienstatic over time, although
a subset of them could possibly be subjected to long-termgd®s such as soil attributes
and groundwater level. However, due to a lack of reliablalaata, it was not possible to
integrate such processes in GH-LUDAS.
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Furthermore, we developed ecological models that wereibtdl the landscape agents to en-
able them to respond to environmental changes and humawentens. Empiricdbtatistical
sub-models were developed and calibrated to calculateiptivty levels of landscape agents.
These yield functions work in response to agricultural injeug. labor, fertilizer), regulated
by the decision-making procedure of the household agerjaphysical attributes of the
landscape agent (e.g. soil fertility), and to long-termraes in rainfall. These changes
in rainfall are also integrated in the second type of ecalaigsub-model, i.e. the livestock
dynamics sub-model. Based on a model developed by Stéphadrieambin (2001), the re-
lationship between livestock population and biomass pedn under diferent rainfall pat-
terns was established. Within this model, the calculatibbi@mass productivity is directly
related to annual rainfall, which regulates the total papah of livestock in the catchment
in terms of tropical livestock units (TLU). This way, housdds are subjected to annual fluc-
tuations in terms of their livestock assets, which haveraaliconsegeunces on their liveli-
hood stratgey and land-use behavior. Finally, a land-ctressition model was developed
to regulate the balance between grassland and croplande @apland is abandonded, it
is converted to grassland after a certain period of timeciwhvas set empirically. These
sub-models, which calculate crop productivity, livestaighkhamics and land-cover changes,
are directly linked to the Human Module, as their resultspeceived by single household
agents and integrated in their decision-making routindse ifiteraction between decision-
making and ecological reponse thus leads to an annual toge-Wwhich has the ability to
change dynamically over time.

Summarizing, by building and calibrating sub-models fou$ehold and landscape
agents, we represent the human-environment in a dynamaptigd and realistic manner.
By defining the attributes and reactive behavior of the simgltities of the coupled human-
environment system of LUCC, the temporal and spatial patbérland-usgcover change
emerges from the dynamics of the interplay of the singletiesti Thus, this approach does
not seek to impose the nature of complexity at the top levéhefkystem, but rather tries to
let complexity emerge from the interactions of low-leveliees and components. Therefore,
the calibration and parameterization of agents and thaotree behavior needed to be ad-
dressed with utmost care. The range of variables and the r@ingost important processes
involved were identified and analyzed on the basis of fieldedaepce, statistical methods

219



Summary and conclusions

and related literature. Household agents and landscapesagere parameterized based on
data collected in 2006 in the study area, with the aim of gméng human behavior and
environmental response as realistically as possible.

The model framework (Chapters 3 to 5), was finally programimnedetLogo, a
multi-agent modeling platform, to produce the operatidaBl-LUDAS with functionalities
of a decision support tool. The setting of external pararsetbows the simulation of alter-
native pathways into the future, comprising parametergléon construction, credit access,
climate change, and changes in demography. While parasngténe policy-related factors
of credit access and dam construction directly modify hbakkand landscape attributes,
climate change regulates the productivity of crop and besnthus influencing land-use be-
havior indirectly. Characteristics of population growidncbe set by the user to define the
dynamics of the number of households during time, which hag@ect consequences on
land and water availability for single households, triggeby increased population pressure
on these resources. Through case-specific settings ofekegaal parameters, future scenar-
ios of land-usgover change can be explored. Simulation outputs inclugagadly explicit
map of land useover for the catchment, graphs indicating the tempordbpaance of land
usgcover and living standards on catchment level (e.g. aveiragene, Gini Index), and
spreadsheets of selected indicators of system performartceh can be exported to other
data processing sofwares. This way, the results of selscadarios can be compared and
analyzed.

The identification, simulation and analysis of selectedhades was thus the main
focus of Chapter 6, as well as a presentation of GH-LUDAS ascestbn support tool. The
realtively easy handling of the model interface allows staktders to use GH-LUDAS as a
simulation tool and a platform for communication among Imed stakeholders, who do not
necessarily need to understand the model code. Furtherintegrated scenarios were de-
veloped for diferent (policy) options, with the purpose of identifying ttamge of possible
future pathways triggered by policy and other externaldiec{policy-related purpose), and
of identifying the main mechansims leading to these speu#ibways of livelihood and land
use (scientific purpose). First, we analyzed the enviroriaiand policy-related conditions in
the study area, and justified the selection of the range efeat parameters of GH-LUDAS.
With the support of this analysis and GH-LUDAS, we condudhedscenario developmentin
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a systematic and organized manner. First, we defined a basglenario, reflecting the pol-
icy settings as they were in 2006, and assumed no changesiatelor demography. This
baseline scenario was then used to compare the pathwayseohypothetical scenarios with
that of the baseline. For this, each external factor waseshffom the baseline gradually to
form a scenario spectrum to assess the impact of the charbesisingle factor. Among
others, simulation results suggest that the policy of danstaction was much lessfec-
tive with respect to average annual income than that of cpgdvision, although it was the
much more costly option in comparison to a credit schemethEtmore, a decline in annual
rainfall seemed to trigger a shift towards cash croppingraordfarm activities, which could
compensate for the losses in harvest caused by decreasguitptmon.

7.2 Limitations

This first version of GH-LUDAS certainly has limitations. r&t, social interaction among
household agents has been implemented only to a limitechiexfdthough neighborhood
effects in the dissemination of knowledge about irrigatiorntedogy are included, other
social processes are ignored, such as conflict, negotiatidrcompetition. Competition for
land resources has only been implemented indirectly thrdagd tenure and lending, and
not through direct negotiation among involved househdilgh direct household-household
interactions were not included, as they would require thdeting of social networks. In the
study area, family networks and villagéihation play an important role in the interaction
among households with respect to granting usufructuahgsign land or denying them (cases
of conflict). Both cases were observed in the study area. Memvéhe identification of
realistic social networks as well as the quantification eftiore qualitative benefits farmers
gain from network membership is an almost impossible taskthErmore, the networking
of household agents would have meant a tremendous redwéttbe computation speed of
GH-LUDAS.

Second, the model cannot be transferred to other areag.dagédn within similar
areas, the range of land-use and land-cover types couldilbeethit, and the decision-making
and ecological sub-models needed to be area-specific. @alpdsic framework of GH-
LUDAS could be reused, but the range of variables and théreaion of the sub-models
should undergo a detailed assessment. An accurate madpatigiloutes of the biophysical
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landscape as well as a detailed household survey would héredg as the variables and
architecture of GH-LUDAS remain rather case-specific.

The third drawback of GH-LUDAS is the assumption of statiakeaprices. Mar-
ket prices for all crops and livestock species were derivechfdata collected in 2006, which
remain identical during the entire simulation period. Heare market prices surely undergo
long-term changes, due to changing global, regional aral emand-supply relations. The
modeling of these processes thus would require the use &gration of global and local
economic models with respect to the local goods of the stuelg. arhis integration of eco-
nomic models as well as the development of local models wreddire intensive studies,
and were beyond the scope of this thesis.

Fourth, a land suitability analysis for dam constructiorswiat carried out, due to
the limited time frame of the study. Within GH-LUDAS, the ¢be of the location of inserted
dams is not supported by a land suitability map, but requliesknowledge of experts. A
land suitability map would require in-depth knowledge oblggical, pedological and hy-
drological data and processes, which is available only tnédd extent. Furthermore, a
simulation-based analysis showed that results on catchienes! were not significantly in-
fluenced by changes in dam locations, although locally,rtigacts were significant.

The final drawback of the model, and maybe the most subskalesin the dif-
ficulty of the validation of model results. Actually, the iddtion of agent-based models is
currently still a debated issue. While classical validatmethods, e.g. sensitivity analysis
and comparing simulated data with observed data, havedunnigo be unsuitable for agent-
based models, a number of validation strategies are prdpsse Bousquet and Le Page,
2004; Parker et al., 2003) and debated.

7.3 Recommendations

Since no model is universally appropriate, GH-LUDAS shauhdiergo version-by-version
improvements, and the first version as proposed in this stiodg not claim to represent
the real-world human-environment system in the most réabsd fully integrated manner.
However, due to the model’s high flexibility, several metblogjical extensions regarding
human decision-making and ecological processes can dg edegrated. Each of these ex-
tensions should aim at a more realistic representationeot.thCC system, although there
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should be a lower limit to the detailedness of the model. Télecsion of such extensions
should thus be guided by finding a balance between a too caadse too detailed represen-
tation of involved processes. Furthermore, each versi@tHbLUDAS, including the current
one, should be validated in order to improve its credibiliy decision-making support and
scientific purposes. In the following, we give recommermaifor methodological exten-
sions and validation techniques for the current GH-LUDA&ian.

e One of the most important processes that have not yet beegratéd in the current
version is the process of land degradation. Severe lanéddation has been observed
during the past decades in the Sudan-Savannah zone (of tieictudy area is part),
which are the result of natural processes such as soil er@sid climate change, as
well as of human-induced loss of soil fertility. Over-cu#ition, over-grazing, lack of
application of fertilizer and conservation measures, addced fallow periods have led
to soil nutrient loss and decreasing agricultural produrctevels. Maps and models of
spatial soil erosion patterns have been developed by ZHF\stach dfer a possibility
to link soil erosion with land-cover change (e.g. convarabgrassland to bare land)
and crop production. However, the integration of humansgedl land degradation
would require long-term observations in the study area,rdeoto establish a sub-
model of the long-term consequences of human decisionsrgaki soil productivity,
and vice versa.

e The model user should be given the choice among alternagigsidn-making sub-
models in order to explore the sensitivity of sub-model ce@n model results. More
research should be done on the formulization @fedéent household decision-making
strategies to examine whether particular formulizatioresagppropriate for particular
decision-making situations. Knowledge of local decisimaking processes as well as
model validation should guide the selection of an appré@rigecision-making archi-
tecture. In contrast to the decision-making approach ohted rational behavior used
in the current version, other approaches may reflect humhaviow of local house-
holds more realistically, but also may have other shortogsi One alternative could
be the use of the BDI (Belief-Desire-Intention) architeetuwhich assumes that the
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decisions of human agents are guided by their beliefs alibet agents and their en-
vironment. However, the drawback of this approach lies edbalitative nature of
beliefs, which impedes the quantification of the interndidbstructure of a household
agent, and his subsequent reactions. However, the rangessibte decision-making
architectures is manifold, and modelers can usually skfsely among them according
to the mechanisms they want to focus on.

A further challenge for the specification of the decisionking architecture is the in-

tegration of a learning mechanism. In reality, many deaisiare influenced by past
experiences, which serve as a basis to estimate future tseaeél deliberate among
options. In GH-LUDAS, currently no such mechanism is inéégd. The k-nearest
neighbor algorithm, which is among the simplest of mache&sning algorithms, was
experimentally implemented in GH-LUDAS, resulting in afbld decrease in comput-
ing speed. The integration of learning mechanisms in GH-R8s thus still impeded

by the computing speed of current computers, but this maggan future computer

generations.

Furthermore, as mentioned above, the economic situatiterims of market prices is
assumed to remain as it was in 2006. This drawback could beeosated for by
integrating at least a global model of future market pricettiations. IFPRI's IM-
PACT model (International Model for Policy Analysis of Agultural Commodities
and Trade) could be used to assess future world market mi@esnge of commodi-
ties until 2025. The model simulates changes in productimhdemand on the level of
regions and single countries, which aggregate to globakaenand production func-
tions. Based on these functions, a global demand-suppanbealthen defines global
market prices for each year until 2025. However, deviatioos this global market
price are often caused by a lack of infrastructure and mamkatmation, especially in
developing countries, which often lead to local irreguias in commodity prices. The
determination of such local price fluctuations for the stadda remains a challenge for
GH-LUDAS.

A land suitability map for dam construction could be develdpgo support policy-
makers in their decisions to find suitable locations for da®gch a map could also
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support the realism of model results, as the placement osdeould follow realistic
assumptions. The understanding of engineering and hygloalbprocesses, which are
required to establish such a decision-support map, costutz applied to an estima-
tion of dam water levels due to climatic changes, which hasebeen considered in
the current version of GH-LUDAS.

The credibility of the model depends on how the internalctre represents the struc-
ture of the system modeled. To improve the understandingthidynodel was built in
this way, detailed descriptions of social and environmezdaditions and local agri-
cultural behavior have been given, upon which the struaitiseb-models and range of
variables were grounded. Assumptions underlying the seteof variables have been
clearly stated and justified. Furthermore, graphical andatige descriptions of the
model structure were given to enhance the model’s lucidity@darity, and to serve as
a basis for expert assessment and comparative model-tetstodies. A documenta-
tion of GH-LUDAS will also be available as an ODD (Overviewg$fdgn concepts, and
Details) protocol, which is a documentation protocol airtednhance the description
of individual-based models and to convey the structure @itlodel in a unified man-
ner. Based on this protocol, other scientists will be erchbderetrace and understand

the model structure and involved variables.

The credibility of the model should not only be enhanced bsaadparent model de-
scription, but also by validation techniques such as histileg. With this technique,
instead of simulating the future, the model is run for a pa&stqga until present, and
the results are then compared to the current situation. Tderrdrawback of this ap-
proach is the usual lack of past data necessary for mod&linétion. Therefore, a
hindcasting approach could only be based on an approxinsatibpast environmental
and household data, which would clearly reduce the powdrisfmhethod in terms of
validation.

Another validation method lies in the comparison of the hsswith other types of
models for the same area. To validate simulated lan¢gcoger patterns, a statistical
GIS-based model could be developed, which extrapolateswdd LUCC patterns into

the future. Based on classified images of several past paititse, transition proba-
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bilities among land-use and land-cover types can be caénjlavhich can be further

used to project land-ugmver patterns into the future.

7.4 General remarks about modeling

What are the lessons that can be drawn from this modefiiogteand in particular from the
use of the agent-based approach? The answer is far from kiegneral, it can be said that
modeling is one of those scientific areas which experieneartbst criticism and distrust,
especially from the non-modeling community. Especiallyoagithe social sciences, models
of human behavior are often regarded as unrealistic andistiopn their assumptions. For
these reasons, what seems to be the most important chal@reymodeler is, apart from the
process of model building, the justification of the assuoningshe made about the model.
With respect to the fact that many models have the reputati@aiming to be universally
valid, three things have to be mentioned. First, at leashédcience of land-ugmver
change, it is widely acknowledged that the understandingwafived processes should rely
not only on modeling #orts, but also on narrative descriptions and mental modise of
these approaches should be considered to be superior. @@maguwvell as mental models
should be regarded as tools to improve future generationstbftypes of models. The second
important issue is that there is the frequent misconceptiah models are hierarchically
ordered in terms of their realism. fPerent types of models are built forftérent types of
purposes in order to examineiddirent types of problems. Each model has its limitations, and
itis easy to accuse models of neglecting some part of redlityd, models, at least in LUCC
sciences, are rarely built completely objectively. Theamsthnding of the modeler about the
system functioning is absolutely necessary, but also raf#s a partly subjective view of the
system on the side of the modeler. Although the assumptiogerlying the model should be
based on objective reasoning, a trace of subjectivity caamge eliminated.

With respect to the use of the agent-based approach foriaudyCC, several
aspects are important. If a realistic policy-related masi¢he target of a study, as it was in
this case, it can be flicult to model the ffects of hypothetical processes and policy inter-
ventions. As realistic agent-based models are usuallydbasestatistical evaluation of real
data, only those processes can be modeled that can be nekastine point of data acqui-

sition. In other words, processes or reactions that do ria& pdace in the study area (to
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some extent) can hardly be simulated, e.g. the adoption afadiyt new crop in the future
or the dfects of hypothetical policy interventions. Furthermofen explicit representation
of decision-making households is desired, multi-agentetodsually need to be confined to
small study areas, and the transferability of model resoltsher areas remains limited. Such
case-specific models are often very data demanding, whsciitsen extensiveféorts of data
acquisition, statistical evaluation and model prograngni@ome former agent-based scien-
tists, among them LUCC scientist Couclelis (2001), douhbt the gain that can be derived
from these types of models compensate for the hifgreneed to develop them. These major
drawbacks are often ignored in agent-based LUCC studidshesagent-based modeling is
often acclaimed as a new paradigm to model LUCC. It is theeef@teworthy to mention
that, the many strengths of the agent-based approach hetaniding, modelers should be
aware of the limitations in the applicability of this appcba
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