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ABSTRACT

Land-use and land-cover change (LUCC), which is a general term for the human modification
of the Earth’s terrestrial surface, increasingly gains attention in the scientific community, due
to its vast global extent and the role it plays in the Earth system functioning. About one third
to one half of the global land surface has been modified by humans, and these changes are
highly interrelated with many environmental, economic andsocial processes and problems.
However, studies on LUCC processes are often challenged by the complex nature and unex-
pected behavior of both human drivers and natural constraints. Many studies tend to focus
either on the human or the environmental part of LUCC systems, thus neglecting the interre-
lationships and responses among these two components. Manyaspects of complexity can be
overcome by a multi-agent based approach, whose design allows an integrated representation
of the feedbacks, hierarchies and interdependencies of thecoupled human-environment sys-
tem of LUCC. A multi-agent simulation model (GH-LUDAS - GHana Land Use DynAmic
Simulator) was developed to model this coupled human-environment system in a small-scale
catchment in Ghana, thereby providing a simulation tool to predict land-use/cover patterns
as related to socio-economic indicators. Apart from pure prediction, the aim of the model
is to explore alternative future pathways of LUCC under selected policy, demographic and
climatic conditions in order to provide stakeholders with support for making better-informed
decisions about land resource management.

Multi-agent based modelling is an approach to design computational models for
simulating the actions and interactions of autonomous individuals (i.e. agents) in a network,
with a view to assessing their effects on the system as a whole. Thus, agent-based modeling
can be regarded as a bottom-up modeling approach, as the behavior and interactions of sin-
gle agents are specified, and complexity is considered to emerge from these specifications.
Following this mindset, GH-LUDAS consists of four modules,which represent the main
components of the human-evironment system of LUCC. The Human Module consists of col-
lections of human agents (i.e. farm households), which are endowed with a set of attributes
and autonomous behavior templates (i.e. the Decision Module), regulating land-use related
decisions in response to the human agent’s attributes and those of its environment. The Land-
scape Module consists of collections of individual landscape agents (i.e. land patches of size
30 x 30 m), which are characterized by biophysical attributes and ecological mechanisms,
which work in response to human decision-making and naturalconstraints (e.g. crop yield,
land-cover change). The Global-policy Module consists of arange of external parameters,
which allow the exploration of alternative future pathwaysof LUCC, and which relate to
attributes of both human and landscape agents. The ability to provide an integrated represen-
tation of these components is one of the strengths of this approach, and its flexibility allows
the upgrading and modification of processes where these havenot yet been considered.

The developed model was applied to a small-scale catchment in Upper East Ghana,
the Atankwidi catchment, which covers an area of about 159km2. Spatially explicit data were
obtained from an ASTER image, digital maps, an extensive land cover inventory and intensive
household surveys. Field data were used to specify attributes and calibrate behavioral sub-
models of households and land patches. Considered externalfactors were the policies of dam
construction and credit access, demographic changes, and rainfall change. Simulation outputs
consist of a spatially and temporally explicit land use/cover map, visual graphs, and export



files of selected land-use and livelihood indicators. Theseconvenient output visualization
tools, together with the user-friendly interface of GH-LUDAS, allow stakeholders to simulate
and analyze selected scenarios, which can serve as a basis for discussion and communication
among stakeholders and policy-makers.

Simulation results suggest that, among others, the policy of dam construction had
much less effect on average annual income than that of credit provision, although it is the
much more costly option in comparison to a credit scheme. Furthermore, a decline in annual
rainfall seemed to trigger a shift towards cash cropping andnon-farm activities, which could
compensate for the losses in harvest caused by decreased precipitation. All simulated spatio-
temporal data developed by these simulations can be used forfurther scientific analyses using
GIS and statistical packages, thereby providing a basis forfurther understanding of local
LUCC processes in Northern Ghana.



KURZFASSUNG

Ein agenten-basiertes Modell zur Simulierung von Landnutzungs- und Landbedeck-
ungsänderungen im Einzugsgebiet des Atankwidi in Nordost-Ghana

Landnutzungs- und Landbedeckungsänderungen, die die durch den Menschen verursachte
Modifizierung der Landoberfläche der Erde bezeichnen, erfahren zunehmende Aufmerk-
samkeit in der wissenschaftlichen Welt, aufgrund ihres weltweiten Ausmaßes und der Rolle,
die sie für die Funktionsweise der Erde spielen. Zwischen einem Drittel und der Hälfte
der Landoberfläche sind bereits durch menschliche Einflüsseverändert worden, wobei diese
Änderungen wichtige Wechselbeziehungen mit ökologischen, ökonomischen und sozialen
Prozessen und Problematiken aufweisen. Studien, die sich mit Landnutzungs- und Landbe-
deckungsänderungen befassen, repräsentieren die Komplexität menschlicher Verhaltensweisen
und ökologischer Bedingungen oft nur in unzureichender Weise. Viele Studien tendieren
dazu, nur eine Komponente des ökologischen Systems, das ausmenschlichen wie aus umweltbe-
dingten Prozessen besteht, zu erfassen, und vernachlässigen dabei die Wechselbeziehungen
zwischen diesen beiden Komponenten. Der agenten-basierteModellierungsansatz hat die
Fähigkeit, viele Eigenschaften von komplexen Systemen zu integrieren, und ermöglicht die
Modellierung von Rückkopplungen, Wechselbeziehungen undskalen-abhängigen Prozessen
des ökologischen Systems. In dieser Arbeit wurde ein agenten-basiertes Modell namens
GH-LUDAS (Ghana - Land Use DynAmic Simulator) entwickelt, das Landnutzungs- und
Landbedeckungsänderungen sowie zugehörige sozio-ökonomische Indikatoren in einem Flus-
seinzugsgebiet des White Volta in Nord-Ghana simuliert. Das Ziel des Modells ist sowohl die
Prognostizierung von Landbedeckungs-/Landnutzungsänderungen als auch die Evaluierung
von möglichen Zukunftsverläufen unter gegebenen politischen Maßnahmen, demographis-
chen Veränderungen sowie Klimawandel. Die Simulierung solcher Szenarien kann die Entschei-
dungsfindungen lokaler Akteure bezüglich Landnutzung unterstützen und als Ausgangspunkt
für Diskussionen unter lokalen Entscheidungsträgern dienen.

Der agenten-basierte Modellansatz kennzeichnet sich durch die Modellierung der
Aktionen und der Interaktionen einzelner Individuen (i.e.Agenten), deren Spezifikationen
in komplexe Phänomene auf Systemebene resultieren. Agenten-basierte Modellierung kann
daher als ein ’bottom-up approach’ bezeichnet werden, da die Systembeziehungen nicht auf
oberster Ebene spezifiziert werden, sondern von den Prozessen zwischen einzelnen Agen-
ten reguliert werden. Dieser Philosophie folgend, gliedert sich GH-LUDAS in vier Haupt-
module. Das soziale Modul besteht aus einer Kollektion von menschlichen Agenten, die
landwirtschaftliche Haushalte repräsentieren, und die mit einer Reihe von Attributen und
Entscheidungsalgorithmen ausgestattet sind. Diese Algorithmen, die innerhalb des Entschei-
dungmoduls spezifiziert sind, regulieren Reaktionen auf persönliche wie auf umweltbed-
ingte Attribute und Prozesse. Das Umweltmodul besteht aus landschaftlichen Agenten, die
aus Pixeln von 30 m x 30 m bestehen, und die mit eigenen Attributen sowie ökologischen
Mechanismen, die auf menschliche Entscheidungen sowie aufnatürliche Prozesse reagieren
(z.B. Ernteertrag, Landbedeckungsänderungen), ausgestattet sind. Das globale Modul besteht
aus einer Reihe von externen Parametern, die von Modellnutzern reguliert werden können,
und die Attribute von menschlichen und landschaftlichen Agenten direkt beeinflussen. Die
Fähigkeit, diese Komponenten zu verbinden und miteinanderzu integrieren, ist eine der



Stärken des agenten-basierten Ansatzes, und seine Flexibilität erlaubt die Integrierung von
Prozessen, wo diese (noch) nicht berücksichtigt worden sind.

Das Modell wurde speziell für das Flusseinzugsgebiet des Atankwidi in Nordost-
Ghana entwickelt, das eine Fläche von etwa 159km2 aufweist. Räumlich explizite Daten
wurden auf der Basis eines ASTER Satellitenbildes, digitalen Karten, einer weiträumigen Be-
standsaufnahme von Landbedeckung, und fokussierten Haushaltsbefragungen generiert. Auf
diesen Felddaten basierend, wurden die Attribute sowie diereaktiven Mechanismen men-
schlicher und landschaftlicher Agenten spezifiziert und kalibriert. Die externen Parameter
des Modells umfassen Maßnahmen, die Dammbau und Kreditvergabe betreffen, sowie de-
mographische Veränderungen und Reduzierung des jährlichen Niederschlags. Die Ausgabe
der Modellsimulationen erfolgt durch eine zeitlich und räumlich explizite Visualisierung von
lokaler Landbedeckung/Landnutzung, Graphiken, und exportierbaren Dateien einerAuswahl
an Systemindikatoren. Diese Bandbreite von Ausgabemöglichkeiten, in Kombination mit
einer benutzerfreundlichen Modelloberfläche ermöglichenbeteiligten Akteuren, ausgewählte
Szenarien zu simulieren und zu analysieren, und kann zur Diskussion und Kommunikation
zwischen Akteuren und Entscheidungsträgern beitragen.

Die Resultate von bereits simulierten Szenarien deuten unter anderem darauf hin,
das die Strategie des Dammbaus eine geringere Wirkung auf durchschnittliches Einkommen
hat als die Maßnahme der Kreditvergabe, obwohl ersteres diebei weitem kostspieligere Maß-
nahme darstellt. Desweiteren zeigt sich, dass eine Reduzierung des jährlichen Niederschlags
eine Verlagerung auf marktfähigere Agrarprodukte (cash crops) und nichtlandwirtschaftliche
Einkommensstrategien auszulösen scheint, die die Reduzierung des Ertrags, verursacht durch
die geringere Niederschlagsmenge, kompensieren. Alle simulierten zeitlichen und räum-
lichen Daten können weiteren wissenschaftlichen Analysenin GIS- und Statistik-Programmen
unterzogen werden, und zu einer Erweiterung des Verständnisses von lokalen Landnutzungs-
und Landbedeckungsänderungen in Nord-Ghana beitragen.
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1 MULTI-AGENT SYSTEMS FOR SIMULATING LAND-USE /COVER CHANGE

1.1 Introduction

Land-use and land-cover change (LUCC) also known as land change is a general term for

the human modification of the Earth’s terrestrial surface. Though humans have been mod-

ifying land to obtain food and other essentials for thousands of years, current rates, extents

and intensities of LUCC are far greater than ever in history,driving unprecedented changes

in ecosystems and environmental processes at local, regional and global scales (Ellis, 2007).

These changes encompass the greatest environmental concerns of human populations today,

including climate change, biodiversity loss and the pollution of water, soils and air. Moni-

toring and avoiding the negative consequences of LUCC whilesustaining the production of

essential goods and services has therefore become a major priority of researchers and policy

makers around the world (Ellis, 2007).

In order to understand the nature of LUCC, it is important to clarify terminology

and definitions used in the field of LUCC research. While land cover is the biophysical state

of the Earth’s surface and immediate subsurface, the term land use refers to the involvement

of both the manner in which the biophysical attributes of theland are manipulated and the

intent underlying that manipulation - the purpose for whichthe land is used (Briassoulis,

2000; Turner et al., 1995). This way, land cover means the physical, chemical, or biological

categorization of the terrestrial surface, e.g. grassland, forest, or concrete, whereas land use

refers to the human purposes that are associated with that cover, e.g. raising cattle, recreation,

or urban living (Meyer and Turner, 1994).

In the analysis of land-use and land-cover change, it is alsonecessary to depict the

term of change in this respect. In land-use/cover research, there are two forms of LUCC:

conversion (i.e. the complete replacement of one land-cover/land-use type by another) and

modification (i.e. more subtle changes that affect the character of the land cover/land use

without changing its overall classification) (Turner et al., 1993). The conversion of forest to

crop land is an example of land-cover conversion, whereas the change in the composition or

health of a forest can be regarded as a modification within this land-cover class (i.e. forest).

Accordingly, changes in land use can be in form of both conversions and modifications. As

the replacement of one agricultural type by another (e.g. from rainfed to irrigated agriculture)

1
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can be seen as the conversion from one land-use type to the other, modifications of one sin-

gle land-use type might include, for instance, the intensification of crop production, without

changing its land-use classification.

The recognition of the importance of such changes in land useand land cover for

the Earth system’s functioning already emerged in the mid 1970s, when studies revealed the

significance of the relationships between land-cover and climate change. At this time, it was

recognized that land-cover change may induce changes in thealbedo, and thus modify the

surface-atmosphere energy balance, resulting in regionaland global climate change (Otter-

man, 1974; Charney and Stone, 1975). In the subsequent decades, it was discovered that

land-cover change does not only modify climate through a changed energy balance, but also

through the creation and especially diminishment of carbonsinks, thus contributing to global

carbon emissions (Lambin et al., 2003). During the following years, many other conse-

quences of land-use/cover change were identified, showing severe impacts on the ecosystem,

including soil degradation, desertification, a loss of biodiversity, declining human health, and

the threat to the ability of biological systems to support human needs (Vitousek et al., 1997).

As the Earth is a complex system of biogeochemical cycles andenergy fluxes, which are

largely regulated by the land surface, the understanding and monitoring of processes related

to land-use/cover change is crucial to the understanding of global dynamics.

In the following, we will depict the five most well-known forms of LUCC in order

to understand the relevance and the magnitude of land-change processes. Deforestation is one

of the most commonly recognized forms of land-cover change (Williams, 2003). According

to FAO (FAO, 2001), deforestation occurs when forest is converted to another land cover

or when the tree canopy falls below a minimum of 10%. On the basis of this definition,

it is estimated that the world’s natural forests decreased by 16.1 million hectares per year

on average during the 1990s (FAO, 2001). Until today, that isa loss of about 5 % of the

natural forests that existed in 1990. The reasons for this reduction are manifold and are

highly dependent on the region. Whereas in Latin America large-scale forest conversions

are mainly due to the expansion of livestock agriculture (Lambin et al., 2003), deforestation

in Africa is mainly a result of cropland expansion. In Asia, intensified shifting agriculture,

including migration into new areas, and logging explain most of the deforestation (Achard et

al., 2002).

2
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The consequences of deforestation for the ecological system are manifold: First, deforesta-

tion can lead to soil erosion or impoverishment, especiallyin tropical areas where soils tend

to be thin and nutrient-poor. Second, deforestation is linked to habitat loss, which is a leading

cause of species endangerment and biodiversity loss, particularly in humid tropical forests.

Third, it affects the hydrological cycle through changes in evapotranspiration and runoff. And

last but not least, deforestation, and particularly forestburning, contributes to greenhouse gas

emissions that bring about climate change (SEDAC, 2002).

A major trend of global LUCC is the expansion of agriculturalland. Currently, agri-

cultural land covers about a third of the global land surface, and has expanded into forests, but

also steppes and savannahs, to meet the growing demand for food (Lambin et al., 2003). Such

conversions involve a change of the whole local ecosystem, e.g. changing animal habitats and

faunas, thus being a direct threat to biological diversity.However, not only the conversion

to cropland plays a role in global change, but also the intensity in agricultural management.

Historically, humans have increased agricultural output mainly by bringing more land into

production. This process of agricultural expansion was gradually replaced in the 1960s by a

process of intensification in some regions of the world, i.e.an increase in food production

per hectare, being mainly achieved through mechanized tillage, fertilizer use and irrigation.

Such agricultural practices contribute to carbon emissions through several mechanisms: the

direct use of fossil fuels in farm operations, the indirect use of embodied energy in inputs

that are energy intensive to manufacture (e.g. fertilizers), and the cultivation of soils resulting

in the loss of soil organic matter (Ball and Pretty, 2002). Furthermore, the use of freshwater

for irrigation and the use of fertilizers lead to a modification of the water and nutrient cycles,

especially the nitrogen cycle.

Natural vegetation cover has not only given way to cropland,but also to pastures,

which are defined as land used permanently for herbaceous forage crops, either cultivated or

growing wild (FAO, 2004). The distinction between pasture and natural savannah or steppes

is not always clear. However, FAO statistics suggest that most pastures are located in Africa

(26 % of the global total of 35 million ha), followed by Asia (25 %) (Lambin et al., 2003).

During the last decade, pastures increased considerably inAsia and the former Soviet States,

which is mainly due to the tremendous increase in the demand for meat (Mooney and Neville,

2005). To meet the growing demand, total meat production is projected to double by 2020
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(Mooney and Neville, 2005). In response to this increase, industrialized animal production

systems are proliferating, and consequently result in complex negative externalities with re-

spect to the environmental sustainability of livestock production.

The resulting concentrated waste production from these systems and its effects on

terrestrial and aquatic ecosystems is a serious matter, with stored liquid manure producing

over 13 million tons of the greenhouse gas methane per year (de Haan et al., 1997). In

addition, the massive global trade in grains for animal feedhas greatly altered regional water

and bio-geochemical balances.

Finally, urbanization can also be ranked among the most well-known frontiers of

LUCC. Since urban areas occupy a relatively small fraction of the Earth’s surface (i.e. 2 %)

(Gruebler, 1994)), this relatively small fraction of urbanized areas may lead to the miscon-

ception that urbanization can be ignored in land-change studies (Heilig, 1994). In reality,

urbanization affects land change elsewhere at a large scale through strong linkages between

urban and rural areas (Lambin et al., 2001). Furthermore, raising living standards of the grow-

ing urban population around the world tend to raise the consumption expectations, leading to

local and global changes in land-use intensity.

When aggregated globally, such LUCC do not only endanger thebiotic diversity

world-wide (Lambin et al., 2001) but also contribute to changes in the energy, hydrological

and biogeochemical cycles of the Earth’s system, thereby leading to climate and ecosystem

change, thus affecting the ability of biological systems to support human needs (Vitousek et

al., 1997). It is therefore of utmost importance to understand the processes involved, to an-

ticipate future land-use/cover patterns, and to find strategies to mitigate the adverse impacts

of such land-use/cover changes. The ability to project future LUCC and its socio-ecological

consequences depends on our ability to understand the past,current, and future drivers of

land-use and land-cover change (USGCRP, 2003). However, relationships between driving

forces and phenomena of LUCC are highly complex and interwoven, thus hampering the

establishment of a general theory of these relations. An attempt to derive a theory through

the identification of specific typical pathways of land-use/cover change has been made by

Lambin and Geist (Lambin and Geist, 2006), based on a review of 132 case studies around

the world. However, instead of repeating these pathways anddemonstrating typical drivers

of land-use change, we will rather focus on the aspects of thecomplexity that is exhibited by
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such processes of land-use and land-cover change, as the understanding of this complexity is

the first step for a reliable representation of the involved processes.

1.2 The complexity of the coupled human-environment systemof land-use/cover change

The complex nature of land-use/cover change is mainly due to the complex way in which

humans and the environment interact in response to each other, whereby these interactions

are regulated by a wide range of factors influencing land-usedecisions at different temporal

and spatial scales. Feedback mechanisms among the components of this coupled human-

environment system even enhance the level of complexity, possibly resulting in an emergent

land-use/cover pattern, which cannot be explained by an analysis of the single constituents of

the system (Parker et al., 2003).

As an understanding of the way such a system works is crucial for a reliable anal-

ysis or synthesis of land-use/cover change processes, in this chapter this complex natureof

land-use systems is characterized. Land-use/cover systems are complex, and the notion of

complexity has consequences for the way the system should bedescribed (Kok, 2001). How-

ever, complexity science is still in its infancy (Goldstein, 1999), and there is no common

definition of complex systems shared by the various involveddisciplines (Manson, 2005).

With respect to land-use systems, Parker et al. (2003) definecomplex systems as ’dynamic

systems that exhibit recognizable patterns of organization across spatial and temporal scales’.

In complexity science as well as in ecological sciences, complexity is often discussed in the

two different dimensions: functional and structural complexity (see Bandte, 2007; Lambin

and Geist, 2002; Kok et al., 2000). In the following, we will summarize the characteristics of

LUCC complexity with regard to both aspects.

1.2.1 Functional complexity

According to Marks (2007), functional complexity of a system is the complexity of the map-

pings from inputs to outputs, whereby the system itself is regarded as a black box. More

precisely, the complexity of the mode of operation of the system is examined by determining

the effect of variation of the input on the system output (Bandte, 2007) without considering

the internal mechanisms. Within land-use system research,functional complexity thus refers
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to the complexity in which variations of driving forces (i.e. explanatory factors) of land-use

change influence land-use/cover patterns. This complexity is driven by the large variety of

explanatory factors, their variation in both time and space, thereby being episodic or progres-

sive, and their high level of interlinkages, thus having a synergetic effect on land-use/cover

patterns. In the following, we will outline the complexity of these driving forces for LUCC,

and justify the significance of this complexity on land-use/cover patterns through examples.

Multitude of driving forces

Land-use change is always caused by a multitude of interacting factors originating from dif-

ferent levels of organization of the coupled human-environment system (Lambin et al., 2003).

At the local level, causes of land-use/cover changes involve a physical action on land cover

such as agriculture, forestry and infrastructure construction (Lambin and Geist, 2006). Such

proximate causes generally operate at the level of individual farms, households or communi-

ties (Lambin et al., 2003; Mather, 2006). At the regional to global level, underlying factors

are fundamental forces that underpin such proximate causes, covering a wide range of politi-

cal, economic, demographic, technological, cultural and biophysical factors. Changes in any

of these indirect drivers usually result in changes in one ormore of the proximate factors,

thus triggering land-use/cover changes (Lambin and Geist, 2006). Due to this wide variety

of driving forces operating at different scales and a frequent sensitivity of land-use/cover pat-

terns to any of these forces, the output-input relations of the coupled human-environment

system underly a high level of complexity.

Multiple causality in LUCC

Driving forces of land-use/cover change not only include variables from a wide range of fac-

tors, but also are highly interrelated with each other. As such, underlying forces do not only

influence proximate causes in a mediated fashion, but are often shaped themselves by other

factors. For example, population increase in a given area - often considered an underlying

cause of land change - may be amplified or modulated by existing or changing social norms or

by fertility or resettlement programs, which may in turn be influenced by changes in knowl-

edge and policy at national and international levels (Lambin and Geist, 2006). It is helpful to

recognize that some factors concern the motivation to change behavior, while others function
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in contextual ways, often filtering the effects of other factors (Turner, 1989; Moran, 2005).

The interplay and interrelations between such driving forces amplify the complexity of the

system functioning, resulting in land-use/cover patterns often difficult to predict.

Temporal and spatial variation of driving forces

Driving forces of land-use and land-cover change are not only highly interrelated, but also

can vary both in time and space, whereby the strength of theirinterrelations is also tempo-

rally and spatially variable. An example for the spatial variability of driving forces and their

effect on land use is given by Lambin and Geist (2006) who describe a typical pathway of

land-use intensification dependent on local market opportunities and population pressure. As

such, land scarcity-driven agricultural intensification occurs in economies that are not fully

integrated in the market, and is usually linked to population growth and density (Lambin and

Geist, 2006). Thus, regional variations in market opportunities and population dynamics may

lead to totally detrimental outcomes in agricultural intensification, and ultimately land-use

and land-cover patterns.

With respect to the temporal variation of driving forces, climate change and its ef-

fect on land-use/cover is a widely cited example. For instance, it has been shown that a

reduction in rainfall in West Africa shortens the length of the growing period and has a con-

siderable impact on potential crop yields and their variability (Voortman, 1998), thus having

a direct effect on the survival strategy of farming households and ultimately land-use choice.

Furthermore, it is important to distinguish between gradual and episodic changes (Lambin

et al., 2003). Episodic changes show periods of rapid and abrupt changes and can have a

completely different impact on land use than progressive changes. Such short-term changes,

often caused by the interaction of climatic and land-use factors, have an important impact on

ecosystem processes. For example, droughts in the African Sahel and their effects on vegeta-

tion are reinforced through a feedback mechanism that involves land-surface changes caused

by the initial decrease in rainfall (Zeng et al., 1999).

1.2.2 Structural complexity

In contrast to functional complexity, structural complexity refers to the level of complexity of

the internal functioning of the system (Bandte, 2007). Within ecology and land-use system
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sciences, structural complexity of LUCC systems is usuallydescribed by three characteristics

of internal complexity, comprising interdependencies, heterogeneity, and nested hierarchies

(Arthur et al., 1997; Epstein, 1999; Holland, 1998; LeBaron, 2001; Manson, 2001). Many

examples of these three key sources of complexity can be identified in human-influenced

landscapes (Parker et al., 2003). Furthermore, an important feature of LUCC complexity is

the evolvement of emergent phenomena at the higher scales ofhuman and biophysical sys-

tems. The term ’emergence’ refers to system’s properties that are not analytically tractable

from the attributes of the internal components (Baas and Emmeche, 1997). More intuitively,

an emergent property may be defined as a macroscopic outcome resulting from synergies and

interdependencies between lower-level system components. In the following, a description

of these four key sources of complexity with respect to land-use and land-cover change is

given.

Nested hierarchies and scale dependency

It has long been apparent to ecologists that ecological systems are hierarchically structured

(e.g. Egler, 1942; Schultz, 1967). Hierarchy, in mathematical terms, is a partially ordered

set, which is a collection of parts with ordered asymmetric relationships inside a whole. In

less mathematical terms, the system works as an organization of levels at different scales,

whereby phenomena at a certain level of scale are explained by processes operating at the

immediate lower level, but are, on the other hand, constrained by processes operating at the

immediate higher level (Le, 2005). The result is a so-called’constraint envelope’ among the

involved hierarchical levels.

An example of such a ’constraint envelope’ is the reproduction behavior of a single

organism. The internal reproduction process of the organism is determined by the operation

and interaction of the single subcomponents of the organism, while the actual reproduction

behavior is constrained by characteristics of the whole population made up of all organisms

(e.g. population density). LUCC systems are usually described as nested hierarchies among

human and natural subsystems, which involve levels consisting of, and containing, lower

levels. As such, individual waterways join to define nested watersheds, and assemblies of

individual species members aggregate to form communities.

Processes involved in the functioning of the system usuallyoperate along the differ-
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ent levels of this organized hierarchy, whereby processes at the higher levels proceed slower

but to a larger extent, and processes at the lower levels proceed faster but to a smaller ex-

tent (Easterling and Kok, 2003). In LUCC, such lower-level processes might refer to direct

land-use decisions made at the household level, which have an immediate but short-term con-

sequence on the local environment. Higher-level processes, on the other hand, might include

the aggregated land-use behavior of the whole population, which influences land-use and

land-cover patterns at the landscape level, but at a lower pace. This difference of type and

pace of processes induced by the difference of scale is called scale dependency.

Evidence from case studies suggests that these scale-dependent processes are also

driven by scale-dependent factors. Variations in explanatory variables of land-use change

across scales usually follow a consistent pattern: at farm scale, such explanatory factors

comprise mostly social and accessibility variables, at landscape scale such factors might in-

clude topography and agro-climatic potential, and at the regional to national scale climatic

variables as well as macro-economic and demographic factors can be identified as land-use

drivers (Veldkamp and Lambin, 2001). For the establishmentof a realistic representation of

processes of land-use change, the existence of hierarchies, the scale-dependency of processes,

and drivers operating at different scales of this hierarchy need to be considered.

Interdependencies and feedback loops

Interdependencies exist among all components of the coupled human-environment system,

both in time and space. These interdependencies exist alongthe horizontal axis as well as

along the vertical axis of the nested hierarchy levels (Lambin et al., 2003). On the human

side, land-use decisions might be influenced by both the land-use history of the land manager

and those of others (temporal interdependency), and by the attributes of their surrounding en-

vironment (spatial interdependency) (Parker et al., 2003). These spatial influences on agent

behavior may include flows of information, diffusion of technology, spatial competition, local

coordination, social networks, and positive and negative externalities among neighbors (see

Case, 1991; Irwin and Bockstael, 2002; Krider and Weinberg,1997; Lansing and Kremer,

1993; Miyao and Kanemoto, 1987; Parker, 2000; Ray and Williams, 1999). On the bio-

physical side, spatial interactions may include slope processes, up- and down-stream effects,

connectivity of natural habitats and ecological edge effects (Parker et al., 2003).
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Webs of interdependencies among system variables and components form a complex network

of transforming feedback loops (Eoyang, 1997). These loopscarry material, energy and

information from one system component to another (Eoyang and Berkas, 1998). Positive

feedback loops tend to amplify system behavior, whereas negative feedback loops usually

counteract the amplification as stabilizers of the system. An example of a positive feedback

loop is the downward spiral of frontier deforestation. Immigrants might clear forest for crop

production, which causes the expansion of agricultural activities. This inappropriate use of

forest soils often results in land degradation and low soil fertility, which finally amplifies the

deforestation process.

Such feedback loops in LUCC systems bring forth that driversof land-use change

can themselves be modified by land-use changes, i.e. they arenot purely exogenous but also

endogenous to the system (Lambin et al., 2003). For instance, demographic changes can re-

sult in changes of land use and land cover, but these changes might influence demographic

patterns in turn. In general terms, the changes in ecosystemgoods and services that result

from land-use change lead to important feedbacks to the drivers of land-use change (Lambin

et al., 2003), thus again causing changes in land-use patterns.

Heterogeneity

The consideration of heterogeneity within LUCC systems is often important to ensure a re-

alistic representation of the landscape as well as of the human agents. For example, hetero-

geneity among land managers can be reflected by differences in values, ability, resources and

experience, which might have an influence on land-use decisions. On the environmental side,

spatial heterogeneous factors important for land-use decisions might include differences in

soil quality, water availability, topography and vegetation (Parker et al., 2003). This hetero-

geneity of both land managers and the biophysical environment might also change over time,

due to interactions among these two components.

When heterogeneity and interdependencies are combined in amodel, analytical so-

lutions may be very difficult to obtain. The adoption of a new technology is such an example

in which both agent heterogeneity and spatial interdependencies are important (Parker et al.,

2003). Here, the spatial heterogeneity is represented by the variability of risk aversion among

land managers to adopt the new technology. The information of the success or failure of those
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land managers who take the risk may spread among the neighboring land managers, the pro-

cess of which represents spatial interdependency. Thus, the spatial distribution of agent types

with different risk aversion over space may influence the spatial extent of adoption. This way,

regions of adoption and non-adoption may emerge as a result of local heterogeneity and spa-

tial interdependencies between land managers. In models that feature both heterogeneity and

interdependencies, usually many possible stable equilibria exist. These equilibria are usually

dependent on the initial state of the model, which is called path dependency. With respect to

the example of technology adoption, the presence of a singleland manager willing to adopt

the new technology is required to initiate a cascade of technology adoption among neighbor-

ing land users. This way, two equilibria are possible: one with adoption, and one without,

dependent on the initial state of the model in terms of heterogeneity.

Emergent phenomena

If researchers are specifically interested in modeling the complex dynamics of a LUCC sys-

tem, they also may be specifically interested in understanding the macroscopic, or emergent,

phenomena that may result. Emergent phenomena are described as aggregate outcomes that

cannot be predicted by examining the elements of the system in isolation. Emergent phenom-

ena exhibit structures that are not explained by lower-level dynamics and typically persist

beyond the average lifetimes of entities upon which they arebuilt (Crutchfield, 1994). More

intuitively, an emergent property may be defined as a macroscopic outcome resulting from

synergies and interdependencies between lower-level system components.

With respect to LUCC, land-use change at the landscape scalecan be regarded as

the aggregation of the multiple small land-use changes, which reinforce or cancel each other

(Lambin et al., 2003). These small changes are the result of the decisions of land managers

under certain socio-economic and environmental conditions, which are, in most cases, made

independently without a central direction. Thus, land-usechange is a complex large-scale

spatial behavior that emerges from the aggregate interactions of less complex land managers

(Lambin et al., 2003). This way, the behavior of the coupled human-environment system

at the landscape scale can be regarded as an emergent phenomenon resulting from low-level

actions and interactions, which makes the behavior of the system unpredictable in most cases.
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1.2.3 The importance of modeling LUCC

Given the diversity of complexity in which LUCC systems operate, we will argue in this sec-

tion why a modeling approach can be a useful tool to integrateand consider such complexity,

thereby providing a tool to understand and predict land-use/cover changes. The analysis of

the multiple interactions of land-use/cover change (see Introduction) with the Earth system

suggests that the understanding of the role of LUCC within this system deserves considerable

attention. Based on the urgency of monitoring land-use/cover change processes, as they are

highly interrelated with bio-geochemical global and regional cycles, soil and forest degra-

dation, and biodiversity, reliable approaches to understand and predict LUCC processes are

needed. Based on this background, the two main targets within the LUCC research com-

munity can be summarized as follows: i) the projection of alternative pathways in the future,

and ii) the development of hypotheses about the functioningof LUCC systems, whereby both

require the understanding of involved processes, which underly a high level of complexity.

Although humans build ’mental models’ when faced with complex phenomena, the

ability to fully capture all aspects of complex systems and ultimately make predictions is lim-

ited, as human mental models tend to simplify systems in particular ways (Costanza and Ruth,

1998). Humans base most of their mental modeling on qualitative rather than on quantita-

tive relationships, linearize the relationships among system components, disregard temporal

and spatial lags, and treat systems as isolated from their surroundings (Costanza and Ruth,

1998). When problems become more complex, and when quantitative relationships, non-

linearities and time and space lags are important, as is the case for LUCC systems, human

mental models need to be supplemented. When models are builtwith consideration of these

different aspects of complexity, they can serve as useful tools to understand and predict future

land-use/cover patterns.

Reliable projections of alternative pathways into the future are important, as in-

creasing evidence suggests that a proactive land management instead of a reactive one is

needed. Proactive management, in contrast to reactive management, which tries to reverse

environmental damages that occurred in the past, attempts to find strategies to avoid damage

in the future. This current shift to a proactive view is basedon the evidence that environ-

mental damage, once done, is very diffcult to undo (Le, 2005), implying that maintaining

ecosystems in the face of changes requires active management for a foreseeable future (Vi-
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tousek, 1997). Models, in this respect, can serve as useful tools to predict future patterns of

land-use/cover, and possibly help to find strategies to mitigate future adverse impacts on the

natural resource base, or even enhance the sustainability of the use of these resources.

Apart from the assessment of alternative future pathways ofLUCC, the second main

target that can be approached by models is to provide a tool totest hypotheses about the

LUCC system functioning. Authors within the LUCC research community argue that the

understanding of land-use processes still lacks a valid theory (Couclelis, 2001), which also

impedes the development of reliable LUCC models. However, although current models might

rely on a weak theoretical basis, models in turn are often a useful tool to develop the under-

standing of LUCC processes, thereby helping to establish a theory for a future generation of

models. In contrast to models used to predict future patterns, which try to be as realistic as

possible, explanatory models may be hypothetical, therebyfocusing on system aspects that

are intended to be explored (Parker et al., 2003), thereby ignoring others. Such models may

be used to understand the key processes underlying land-usesystems (Parker et al., 2003), to

test the sensitivity of land-use/cover patterns to variations in driving forces (Veldkamp and

Lambin, 2001), and to assess system stability.

1.3 Modeling LUCC

Due to this urgency to project and understand land-use change processes, LUCC modeling

has attracted more attention in recent years in research fields related with global environ-

mental issues (Shibasaki, 2003). A range of LUCC models has been developed to meet land

management needs, and to better assess and project the future role of LUCC in the function-

ing of the Earth system (Veldkamp and Lambin, 2001).

As land-use change usually depends on both the physical environment of the in-

volved actors and their socio-economic context, processesof land-use change are often mod-

eled as a function of a selection of variables from both domains, acting as driving forces

of land-use change. Such driving forces are important in allland-use change models, but

their selection and the quantification of the relations between the driving forces and land-use

change is very much dependent on the modeling approach chosen. In this chapter, we will

present various types of modeling approaches and their strengths and limitations, and will

give a reasoning for using an agent-based approach within this study.
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1.3.1 Approaches to modeling of LUCC

There are different approaches to modeling of LUCC. Based on model purposes, underlying

theories, types of modeled land uses, and the spatial and temporal levels of analysis, Bri-

assoulis (2000) distinguished five main categories of models: i) equation-based models, ii)

system dynamics models, iii) empirical-statistical models, iv) cellular automaton models, and

v) agent-based models. In the following, we will give short descriptions of each of these ap-

proaches, and analyze their capability to integrate structural complexity.

Equation-based models

Equation-based models are models that capture system characteristics by identifying system

variables and describing the system with sets of equations relating these variables (Sun and

Cheng, 2002). The evaluation of these equations produces the evolution of the system char-

acteristics over time (Huigen, 2003). As equation-based models tend to make extensive use

of system-level characteristics (Huigen, 2002), the integration of heterogeneous and interact-

ing low-level entities is generally not considered (Sun andCheng, 2002). Interaction usually

takes place among the system-level variables, although literature review indicates that hi-

erarchies or different levels of organization can possibly be integrated to some extent (e.g.,

Enge-Rosenblatt et al., 2007). Another major drawback of such models is that a numerical

or analytical solution to the system of equations must be obtained, also limiting the level of

complexity (e.g. feedback loops) that may practically be built into such models (Parker et al.,

2003).

System dynamics models

System models represent stocks and flows of information, material and energy as sets of

differential equations linked through intermediary functionsand data structures (Gilbert and

Troitzsch, 1999). Such models, which are usually broken into discrete time steps, can repre-

sent human and ecological interactions, thus allowing feedbacks to operate within the system.

Although these kinds of models can address the shortcomingsof equation-based models in

terms of representing feedbacks and dynamic processes, they also operate at an aggregated

level (Parker et al., 2003). As such, heterogeneity and interactions are only considered at a

very coarse temporal and spatial resolution. However, similar to equation-based models, such
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models offer the possibility to integrate hierarchical structures.

Empirical-statistical models

The application of statistical techniques to derive the mathematical relationships between

dependent variables and sets of independent variables is widespread in modeling socio-

economic and other systems of interest (see Colenut, 1968; Lee 1973). Empirical-statistical

models find a set of best-fit model coeffcients that express a statistical relationship between

a dependent variable (e.g. LUCC) and a series of independentvariables (representing drivers

of LUCC). Multiple linear regression techniques are generally used to extract transition prob-

abilities among the states of the landscape (Briassoulis, 2000), which are dependent on the

selected drivers. The strengths of such an approach are the ability to provide information on

the key drivers of LUCC and the ability to enter and analyze data at various scales.

The disadvantage of such statistical models is that they cannot be transferred spa-

tially in the sense that a regression model that fits well in the region of the variable space

usually performs poorly outside that region. Furthermore,these models require a data set on

the rates and quantities of change. Thus, these models are only suited to predict changes in

land-use intensity where such changes have been measured over the recent past (Briassoulis,

2000).

With respect to the representation of structural complexity, such models can take

into account spatial heterogeneity and interaction (Parker et al., 2003) at a single hierarchical

level of organization (e.g. Furrer et al., 2007). However, feedbacks across scales and system

components cannot be effectively modeled (Parker et al., 2003).

Cellular automaton models

Cellular automaton models consist of a regular grid of cells, each in one of a finite number of

states, where cell transitions are based on the state of the current cell and the states of neigh-

boring cells. Such ’neighbors’ can be very broadly defined, and may include multi-scale

influences. These models are very strong at representing local spatial processes of LUCC,

but on the other hand they may place too much emphasis on the local interactions, and not

sufficiently represent the human behavior regarding land use. Although cellular modeling

techniques offer greater flexibility for representing spatial and temporal dynamics, they have
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limited ability to reflect feedback mechanisms, as these dynamics are built on stationary tran-

sition probabilities (Parker et al., 2003). Apart from thisdrawback, some extension forms

of cellular automata can take into account heterogeneity ofthe modeled landscape, integrate

levels of hierarchy (see Adamides et al.,1992), and consider interaction processes spatially

and across hierarchy levels.

Agent-based models (ABM)

Most significant, none of the above modeling techniques can represent the impacts of het-

erogeneous, autonomous and decentralized human decision-making on the landscape (Parker

et al., 2003). Many of the limitations faced by other modeling techniques with respect to a

realistic representation of complexity can be overcome by ABM models.

Agent-based models of land-use/land-cover change (ABM/LUCC) usually consist

of two key components. The first is a cellular model that represents the landscape under study.

This cellular model may draw on a number of specific spatial modeling techniques, such as

cellular automata, spatial diffusion models, and Markov models. The second component is an

agent-based model (ABM) that represents human decision-making and interactions (Parker et

al., 2003). As such, an agent-based model consists of autonomous decision-making entities

(agents), an environment through which agents interact, rules that define the relationship

between agents and their environment, and rules that determine sequencing of actions in

the model. Agent-based models are usually implemented as multi-agent systems (MAS), a

concept originated in the computer sciences, which allows for a very efficient design of large

and interconnected computer programs.

The potential of MAS/LUCC models is their capacity to represent the co-evolution

of human/environmental systems regarding land-use/cover change, by integrating human-

related processes with those of nature. By modeling such underlying processes, the emerging

dynamics and complexity of this coupled human-environmentsystem can be represented

within the model. Furthermore, all aspects of structural complexity can be easily integrated

by using MAS, including the heterogeneity on both the landscape and human side, envi-

ronmental and human hierarchical levels, and spatial and temporal interactions among all

components and across hierarchical levels. Furthermore, feedbacks within and between the

environmental and Human Module can be effectively integrated.
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1.3.2 Opportunities for MAS/LUCC

In general, the benefit of MAS over other modeling techniquesis due to its ability to capture

emergent phenomena, its ability to provide a natural description of a system, and its flexi-

bility, i.e. the easiness with which processes and components can be integrated (Bonabeau,

2002). The latter quality is perhaps the greatest advantageof MAS/LUCC models. Because

these types of models do not need to be solved for closed-formanalytical solutions, details

critical to the system under study can be easily built in. Furthermore, such flexibility allows

researchers to design and execute experiments to explore alternative causal mechanisms, by

modifying system processes and components (Parker et al., 2003).

In contrast to many other LUCC modeling approaches, the human and the envi-

ronmental part as well as their interrelations can be effectively modeled with MAS. Other

modeling approaches tend to focus on either part of the LUCC system, thus neglecting the

interactive nature of the coupled human-environment system of LUCC. Within MAS, land-

use change rather emerges from the interactions among various components of the LUCC

system, which then feeds back to the subsequent developmentof those interactions. Thus,

agent-based modeling has the ability to represent the dynamic and non-linear pathway of

land-use/cover change.

Furthermore, agent-based models do not impose the relationships among system

components, but rather represent individual behavior, which results into emergent patterns

at system level through interactions (Huigen, 2003). This way, complexity is modeled from

the bottom-up, which makes MAS models being increasingly recognized as useful tools for

building a sound theoretical framework to deal with the complexity of LUCC (van der Veen

and Otter, 2001; Bousquet and Le Page, 2004). Apart from thisability to capture complex

system behavior, MAS can provide a natural description of the human-environment system.

Its architecture makes it possible to map the concepts and structures of the real world into the

model in ways that preserve natural objects and connections(Bonabeau, 2002). Especially the

rapid development in spatial information technology (e.g.GIS, remote sensing) facilitates a

realistic specification of the environmental component. New MAS computer platforms (e.g.

NetLogo) allow the integration of such a GIS database for landscape specification. User-

friendly programming platforms facilitate the programming of agent action and interaction,

and allow model users who are not familiar with the model codeto easily specifiy model
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parameters and run simulations.

Due to these strengths, MAS/LUCC models have been recognized as a promising

tool to address the complexity of the coupled human-environment system in LUCC model-

ing (Parker et al., 2003). Within the LUCC research community, recent progress has been

made from abstract MAS/LUCC models to more comprehensive presentations of real-world

land-use systems. The flexibility in the specifications of agents allows the incorporation of

social and ecological processes, and models and approachesof many disciplines can be in-

tegrated within MAS. This interdisciplinarity aims at improving a realistic representation of

the LUCC system, as land-use/cover change involves the interplay of social, economic and

environmental processes.

However, although this approach fulfills many of the requirements for reflecting

real-world processes, this approach also has some drawbacks, which will be analyzed in the

next section. Furthermore, all of the above models have their strengths, and the choice of the

modeling approach is highly dependent on the nature of the object of investigation. Finally,

based on the analysis of the shortcomings and strengths of ABM and its suitability for our

purposes, we will argue why we decided to use a multi-agent-based approach to study land-

use/cover change phenomena in our study area, a small-scale catchment in Upper East Ghana.

1.3.3 Challenges of multi-agent systems for studying LUCC

Although it has been argued that MAS is highly suitable for modeling complex LUCC, there

have still been many challenges in its application for real-world land-use systems. Due to

the high level of flexibility in the specification and design of MAS, a researcher may easily

be trapped in modeling causal and non-causal factors, drivers and processes, important and

irrelevant (Huigen, 2003). In addition, model outcomes have to be treated with caution, as

’in every case of simulating complex adaptive systems, the emergent properties are strictly

dependent on the rules preprogrammed by the investigator’ (Fogel et al., 1999). Thus, an

in-depth investigation and understanding of the circumstances and their relevance to land-use

processes in the study area needs to be obtained beforehand to avoid a biased selection and

design of drivers and processes.

The second challenge of MAS models - if they are meant to be realistic - is the great

effort involved in programming and data acquisition, as the behavior of single individuals
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needs to be modeled explicitly, being mostly dependent on a wide range of factors. Relevant

and sufficient data are usually not available and have to be collected. Furthermore, as agent-

based models aim to explicitly represent human decision-making, the problem of modeling a

highly complex, dynamic spatial environment has shifted tothe problem of modeling highly

complex, dynamic decision-making units interacting with that environment and among them-

selves in highly complex, dynamic ways (Couclelis, 2001). This way, the computational and

modeling effort of MAS might exceed that of other approaches.

Third, the validation and verification of agent-based LUCC models is a difficult en-

deavor. Due to the huge parameter space, the model outcomes cannot be captured easily and

thus cannot be easily analyzed and validated by formal methods (Huigen, 2003). Further-

more, alongside the increase in computational power and theincreased ease of programming,

the complexity of models has increased manifold. This increased complexity and the lack of

available data for validation hamper the assessment of the degree of realism of MAS models.

Therefore, assumptions underlying the functioning of the model have to be clearly stated and

justified.

1.4 Problem statement and research objectives

As we have discussed the urgency of predicting and understanding future land-use and land-

cover change and the subsequent needs for reliable simulation models, the target of this study

is to develop an operational LUCC model, which, in order to serve as a tool for testing the

impact of policy interventions, should represent land-useprocesses and their relation to poli-

cies in a realistic way. Since farmers in Africa directly depend on the natural resource base

for their living, the prediction of future land-use/cover patterns and related income patterns in

Africa is an issue of major importance. In order to investigate the nature of LUCC and related

ecological services, we selected a study area in Northern Ghana, the Atankwidi catchment in

the Upper East Region, as a case study for land-use related problems and prospects in West

Africa. Due to the reliance of local farmers on ecosystem services, both future LUCC and

income structures need to be assessed. Furthermore, in order to be able to mitigate nega-

tive externalities of the local use of natural resources andto enhance their sustainable use,

the impact of policy interventions on future land-use and income structures also needs to be

estimated. Therefore, the goal of this study is to develop a realistic simulation model for
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land-use and land-cover change and income structures for the Atankwidi catchment of Up-

per East Ghana, which can be used to explore alternative pathways into the future caused by

policy interventions.

The choice of the modeling approach for this endeavor not only depends on the lim-

itations and strengths of the various techniques, but also on the scale of analysis, comprising

spatial resolution and extent. As in agricultural areas thedecisions made by man are the main

influences on land-use/cover patterns (Mander and Jongman, 1998), it is advantageous to di-

rectly simulate the decisions of land managers, resulting in a model resolution at farm level.

However, with such a fine-scale resolution, the spatial extent of the area under observation

is usually limited to small areas. The study area fulfills this requirement, as with an area of

159km2 and a population size of 6400 households it is relatively small, thus allowing such an

individual-based approach. Due to these reasons and the potential strengths of MAS models,

we decided to use an agent-based approach for modeling LUCC in the study area.

As we have discussed, an agent-based approach is the most appropriate method if

the explicit representation of human decision-making and arealistic representation of the

structural complexity of the land-use system is desired. However, the major challenges of the

agent-based approach lie in the realistic representation and calibration of the coupled human-

environment system as found in the real world. The main research objective of this study is,

therefore, as follows:

To develop a realistic agent-based model for simulating thecomplex LUCC pathway in a

semi-arid catchment in the Upper East Region of Ghana, thereby generating an operational

tool to explore the impact of policy interventions on futureland-use/cover patterns and in-

come indicators.

The achievement of this goal indeed involves a model development process that includes

sequential steps. First, a parameterized framework representing the structure and functions

of the coupled human-environment system underlying LUCC has to be formulated. Next,

relevant local socio-economic and ecological processes need to be identified and empirically

parameterized using observed data. Finally, these processes need to be integrated into the

parameterized framework in order to obtain an operational MAS/LUCC model, which can be
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used to explore the potential impact of local land-use related policies on land-use/cover and

livelihood. The interrelated sub-objectives are therefore:

1. To build a parameterized MAS/LUCC framework for modeling the evolution of the

coupled human-environment system in the study area, whereby land-use/cover and

socio-economic dynamics are self-organized from interactions among farming house-

holds and land patches, under the influence of certain policies and other external cir-

cumstances,

2. To calibrate and verify land-use decision-making sub-models of the farming house-

holds (i.e. human agents) in the study area,

3. To calibrate and verify sub-models representing relevant biophysical dynamics of land

patches,

4. To develop an operational MAS/LUCC model based on the parameterized framework,

by integrating the calibrated decision-making and ecological dynamics sub-models, in

order to explore the likely outcomes (in terms of land-use/cover and socio-economic

features) of selected policy alternatives and other external factors.

1.5 Outline of thesis

This thesis consists of seven chapters. This chapter gives an introduction in global phenomena

and problems related to land-use and land-cover change, identifies the complex nature of such

changes, and discusses the strengths and limitations of current approaches. A justification is

given for the application of the agent-based approach for modeling land-use/cover change in

the study area, and the related research objectives are outlined.

Chapter 2 clarifies technological concepts and methods of MAS and establishes a

conceptual framework for detailed technical work. First, basic concepts of the agent-based

approach are elucidated using land-use-specific examples.These concepts comprise the con-

cept of agents, agent environment, and agent architectures. Following the multi-agent mind-

set, a conceptual framework for the coupled human-environment system underlying LUCC is

presented, serving as a basis for detailed descriptions in later chapters. Third, a brief descrip-

tion of the study area is given. The chapter ends with the discussion regarding the selection
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of NetLogo, a MAS computer platform (Wilenski, 1999).

Chapter 3 deals with the first specific objective. It formulates the first principles and

architecture of the MAS/LUCC framework, named GHana - Land- Use DynAmics Simulator

(GH-LUDAS). The chapter consists of two parts. In the first part, the four main modules of

the model as derived from the conceptual framework are described in detail, including the

Human, Landscape, Decision-making and Global-policy Modules. The range of land-use-

relevant variables on both the landscape and the human side is described in detail, and the

structure and sub-routines of the Decision Module are presented.

Furthermore, the range of variables of the Global-policy Module, whose values are

set externally by the model user, and their integration intothe coupled human-environment

system is described. The initialization of the model is presented, i.e. the setup procedures

at the start of the simulation runs, and the simulation protocol describing the sequence of

routines during model run. The architecture of GH-LUDAS andthe simulation protocol are

presented using textual, graphical and algebraic languages prior to any empirical calibration.

These calibrations will be conducted and justified in the subsequent chapters.

Chapter 4 deals with the second specific objective, the calibration and verification

of the decision-making processes of human agents. The studyarea is described with respect

to land use and socio-economic conditions in order to make the subsequent specifications of

the decision-making sub-models more comprehensive. Basedon the findings from the area

description, the human agents (households) are categorized into typical groups according to

livelihood structure and strategy, using data condensation (Principle Component Analysis)

and classification (k-mean Cluster Analysis) techniques. Finally, land-use decision-making

sub-models are developed, being partly dependent on the previously derived agent groups,

using spatial regression analysis (m-logit regression). The coefficients obtained through the

application of these statistical techniques are directly fed into the model in order to calibrate

the final operational MAS/LUCC model GH-LUDAS.

Chapter 5 presents the specific objective 3, i.e. the determination of land-use-

relevant landscape-specific attributes and the calibration and verification of relevant dynamic

ecological models. The detailed description of the biophysical setting of the study area serves

as a basis for the further model specifications. The land-use-relevant landscape attributes are

then described and visualized, including local land-coverpatterns, biophysical attributes and
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spatial accessibility. Furthermore, the sources and data processing techniques for the determi-

nation of these attributes are given. Finally, the biophysical sub-models are developed, being

confined to land-use-type specific productivity functions,a livestock dynamics model, and

a land-cover transformation sub-model. Both the spatial patterns of the landscape attributes

and the biophysical sub-models are fed into GH-LUDAS in order to obtain an operational

MAS/LUCC model.

In Chapter 6, GH-LUDAS as a decision support tool, and the identification, simula-

tion and analysis of selected scenarios are presented. Based on an analysis of the environmen-

tal, demographic and policy setting of the study area, the external parameters of GH-LUDAS

are specified. The setting of these parameters allows stakeholders and researchers to test their

assumptions through simulation-based analysis. For thesepurposes, the use of GH-LUDAS

as an operational tool for decision support and research is presented, including a summary of

its internal structure, and model input and output. Selected scenarios are specified and ana-

lyzed. The range of external parameters allows specifications in policies of dam construction

and credit access, as well as in demography and climate change. For each of these families of

parameters, scenarios have been selected and compared to a baseline scenario, which reflects

the policy settings as they were in 2006. Finally, the sensitivity of these factors to the LUCC

system is presented and analyzed.
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2 MULTI-AGENT SYSTEM ARCHITECTURE

2.1 Introduction

Multi-agent systems (MAS) are a relatively new sub-field of computer science - they have

only been studied since about 1980, and the field has only gained widespread recognition

since about the mid 1990s. However, since then, international interest in the field has grown

rapidly. This is partly due to the belief that agents are an appropriate software paradigm to

understand and build a wide range of artificial social systems (Wooldridge, 2002). Multi-

agent-based simulation is nowadays used in a growing numberof areas, where it is progres-

sively replacing other techniques (e.g. micro-simulation, object-oriented or individual-based

simulation techniques) (Drogoul et al., 2003).

This is due, for the most part, to the fact that MAS can cope with very different

models of ’individuals’, ranging from simple entities to more complex ones. The easiness

with which modelers can handle different organizational levels of representation (e.g., indi-

viduals and groups) within a unified conceptual framework isalso particularly appreciated,

with respect, for instance, to cellular automata (Parker etal., 2003). During the last decade,

the approach has been applied to more and more scientific domains: sociology (Pietrula et al.,

1998; Goldspink, 2003), biology (Resnick, 1995; Drogoul etal., 1995), physics (Schweitzer

and Zimmermann, 2001), chemistry (Resnick, 1995), ecology(Huberman and Glance, 1993),

and economy (Ben Said et al., 2002).

In the field of ecosystem management, access and use of natural and renewable

resources are key issues. Scientists working in this area need to examine the interactions

between ecological and social dynamics. For many years, this question has been indeed ex-

amined either exclusively from the angle of ’an ecological system subject to anthropogenic

disturbance’, or from the angle of ’a social system subject to natural constraints’ (Bousquet

and Le Page, 2004). With the shift to the agent-based paradigm, the interactions between the

social and the ecological components, as well as their heterogeneity, are taken into account

(Bousquet and Le Page, 2004). These human-nature interactions as well as their heterogene-

ity play a major role in the coupled human-environment system underlying LUCC, which can

be appropriately addressed by the agent-based methodology.

In this chapter, we will clarify the concepts underlying theagent-based approach
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in order to understand the further steps of model conceptualization, specification and imple-

mentation. Furthermore, we will review recent advances in computer platforms for MAS in

order to provide a basis for the selection of a suitable package for our work. Finally, we will

present a conceptual MAS framework of the coupled human-environment system underlying

LUCC.

2.2 Multi-agent system concepts

There are many different definitions of an agent and multi-agent systems. Here,we present

the definition given by Ferber (Ferber, 1995 and 1999) because it seems to be the more mean-

ingful one for researchers in ecology and environmental sciences. A multi-agent system

consists of the following components:

• An environment (E), that is usually a space.

• A set of objects (O), which are situated in E.

• An assembly of agents (A), which are specific objects (a subset of O) representing the

active entities in the system.

• An assembly of relations (R) that link objects (including agents) to one another.

• An assembly of operations (Op) making it possible for the agents of A to perceive,

produce, transform, and manipulate objects in O.

• Operators with the task of representing the application of these operations and the re-

action of the world to this attempt at modification, which we shall call ’the laws of the

universe’ (e.g. productivity as a result of land managementdecisions and land cover

change).

To make this definition more comprehensive, we give examplesfor each of the

concepts from the perspective of the coupled human-environment system underlying LUCC.

The environment E is simply the landscape under study where agents and other objects are

located. While agents refer to decision-making entities - here represented by farmers, or more
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specifically by farming households - the non-agent objects include features such as houses,

markets, rivers or farm plots, which all possess a certain location within the environment E.

The relations among objects - including agents - can be manifold: Relations among among

agents might refer to social interaction with respect to land use, whereby relations among

agents and non-agent objects might, for instance, refer to tenure rights of an agent to a certain

piece of land. The operations of an agent including perception, production and transforma-

tion of objects can be interpreted in the way an agent perceives his environment and takes

certain actions according to these perceptions and own conditions. These actions might in-

clude the choice of land use type, the decision to do irrigation farming, or the choice of land

management. Operators - or ’the laws of the universe’ - then might include the model of crop

productivity, being partly dependent on previous actions of the household agent, or it might

include the natural as well as the human-induced transformation of land cover (e.g. natural

vegetation growth, tree logging).

2.2.1 Concept of environment

In any MAS, agents are situated in an environment, therein searching for information, inter-

acting with each other, and possibly modifying it. The representation of such an environ-

ment is highly dependent on the objectives of the study. Russell and Norvig (1995) gave an

overview of the range of possible environment classes as follows:

• Accessible vs. inaccessible

An accessible environment is one in which the agent can obtain complete and accurate

information about the state of the environment. Modeled real-world environments are

usually accessible to some degree only. The more accessiblean environment is, the

simpler it is to build agents to operate in it.

• Deterministic vs. non-deterministic

A deterministic environment is one in which the outcome of any action is defined, i.e.

there is no uncertainty about the state that will result fromperforming an action. The

physical world can be regarded as non-deterministic with respect to particular proper-

ties.
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• Static vs. dynamic

A static environment can be assumed to remain unchanged except by the performance

of actions by the agent. A dynamic environment is one that hasother processes oper-

ating in it, and which hence changes in ways beyond the agent’s control. The physical

world is a highly dynamic environment.

• Discrete vs continuous

An environment is discrete if its states are represented in acountable way (i.e. a discrete

scale). For example, the landscape environment is discretein land-use/cover types

and continuous in many biophysical properties, such as surface slope, moisture and

biomass.

As the real environment is a highly inaccessible, non-deterministic, dynamic and

continuous environment, such properties should be incorporated in a model that tries to sim-

ulate real-world processes, such as land-use and land-cover change. Thus, in GH-LUDAS, we

consider these real-world properties. For instance, the inaccessibility and non-determinism

of our environment is represented by a limited sphere of influence for each agent, in which

the agents have limited control over the results of their actions. Furthermore, GH-LUDAS

can be regarded as partially dynamic, as land-cover transformation processes take place even

without agent interference. Finally, the model environment is continuous to some extent, as

objects and agents do exhibit dynamic state variables and actions at a continuous scale, which

results into an uncountable number of environment states.

2.2.2 Concept of agent

In MAS literature, there is no universally accepted agreement about the definition of the

term agent. However, there is a general consensus that autonomy is central to the notion of

agency, being confined by the following definition given by Weiss (1999: page 32):An agent

is a computer system situated in some environment, that is capable of autonomous action in

this environment in order to meet its design objectives.The term autonomy here refers to

the ability of agents to act without the intervention of other agents or other systems. Such

actions of an agent are a result of the agent’s perceptions ofthe environment, and, if designed
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as such, also of the agent’s own state (see Figure 2.1).

Furthermore, it is important to mention that this definitionof agency refers only

to ’agents’ in general, and not to ’intelligent agents’. According to Weiss (1999: page 32),

an intelligent agent is one that iscapable of flexible autonomous action in order to meet its

design objectives, where flexibility means:

• reactivity: intelligent agents are able to perceive their environment,and respond in a

timely fashion to changes that occur in order to meet their design objectives;

• pro-activeness:intelligent agents are able to exhibit goal-directed behavior by taking

the initiative in order to satisfy their design objectives;

• social ability: intelligent agents are capable of interacting with other agents in order to

satisfy their design objectives.

With respect to the coupled human-environment system of land-use/cover change,

these abilities can be interpreted in the following way: Humans can be regarded as reac-

tive agents, as they adapt to changes within their environment, such as climate or ecosystem

change, in order to meet and maintain their design objectives, which might include economic

and social welfare. Second, the human seeking to maintain orimprove the personal condi-

tion clearly behaves in a goal-directed manner, in that decisions to be made are deliberately

chosen to meet such personal objectives. With respect to land use, land-management deci-

sions are closely related to the personal objectives of the farming household, e.g. ability to

survive, improvement of living conditions. Finally, interactions among farmers play a role

in land-use systems, with knowledge transfer and competition being two major character-

istics of such agent interaction. Knowledge transfer refers to the diffusion of agricultural

land-management practices or new agricultural technologies through the population by com-

munication and observation, which has a direct impact on land-use patterns. Competition, on

the other hand, can be interpreted as the way in which farmerscompete for natural resources,

e.g. agricultural land, pastures, forests for timber logging, etc.

In GH-LUDAS, all these attributes were considered for farming agents, which are

endowed with both reactive and goal-directed behavior. Regarding social interaction, tech-
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Figure 2.1: Agent-Environment Interaction

nology diffusion has been considered through neighbor effects, i.e. the transfer of knowledge

by neighboring farming households. Competition is not represented directly by agent-agent

interactions, but is mediated through the use of land, thus resulting in competition for land

among households.

2.2.3 Agent architecture

Following these definitions of agent and environment and theconcept of agent perceptions

resulting in actions, a function that implements such agentmapping from perceptions to ac-

tions is required. Such a function is called agent architecture. The literature usually cites the

following five different types of architecture (Russell and Norvig, 1995):

• Simple reflex agents

• Model-based reflex agents

• Goal-based agents

• Utility-based agents

• Learning agents

In the following, we will give short descriptions of each of these architectures, and

justify the selection of architecture to be implemented in GH-LUDAS.
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Simple reflex agents

The agent architecture of simple reflex agents consists of simple ’if-then’ rules (or condition-

action rules) reacting to environment conditions perceived by the agent, and resulting in

certain actions. Figure 2.2 gives the structure of a simple reflex agent in schematic form,

showing how the condition-action rules allow the agent to make the connection from percept

to action. Such reflex decision-making mechanisms are suitable for representing reactive be-

havior of both human and biophysical agents. For human agents, the application of reflex

decision-making assumes that people do not (or cannot) calculate any anticipated values of

alternatives, but rather react in a timely fashion according to their daily routines to select di-

rectly options based on current conditions (Cioffi-Revilla and Gotts, 2003; Haggith, 2002).

E
nvironm

ent

Agent

What the world
is like now

What action I
should do

Sensors

Actuators

Condition-action rules

Figure 2.2: Reflex-based agent architecture

Model-based reflex agents

The simple reflex agent described above will work only if the correct decision can be made

on the basis of the current perception. Such an architecturecan be problematic, because the

sensors do not always provide access to the complete state ofthe world. In such cases, the

agent may need to maintain some internal state information in order to distinguish between

world states that generate the same perceptual input but nonetheless are significantly differ-

ent. Updating this internal state information as time goes by requires two kinds of knowledge

to be encoded in the agent architecture. First, we need some information about how the world
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evolves independently of the agent. Second, we need some information about how the agent’s

own actions affect the world. Figure 2.3 gives the structure of the model-based reflex agent,

showing how the current perception is combined with the old internal state to generate the

updated description of the current state.
E

nvironm
ent

Agent

What the world
is like now

What action I
should do

Sensors

Actuators

Condition-action rules

What my actions do

How the world evolves

State

Figure 2.3: Model-based reflex agent architecture

Goal-based agents

Knowing about the current state of the environment is not always enough to decide what to

do. The right decision is dependent on the goals of the agent.In other words, to arrive at the

desired decision, the agent needs some sort of goal information which describes situations

that are desirable. The agent program can combine this with information about the results

of possible actions (the same information as was used to update internal state in the reflex

agent) in order to choose actions that achieve the goal. Sometimes this will be simple, when

goal satisfaction results immediately from a single action; sometimes, it will be more tricky,

when the agent has to consider long sequences of actions to achieve the goal. Searching and

planning are the subfields of Artificial Intelligence devoted to finding action sequences that

do achieve the agent’s goals. In Figure 2.4, the internal mechanism of such goal-directed

behavior is depicted.
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Figure 2.4: Goal-based agent architecture

Utility-based agents

Goals alone are not really enough to generate high-quality behavior. For example, there are

many action sequences that will make the agent achieve its goal, but some are quicker, safer,

more reliable, or cheaper than others. Goals just provide a crude distinction between ’happy’

and ’unhappy’ states, whereas a more general performance measure should allow a compar-

ison of different world states (or sequences of states) according to exactly how happy they

would make the agent if they could be achieved (see Figure 2.5). The customary terminol-

ogy is to say that if one world state is preferred to another, then it has higher utility for the

agent. Utility is therefore a function that maps a state ontoa real number, which describes

the associated degree of happiness.

A complete specification of the utility function allows rational decisions in two

kinds of cases where goals have trouble. First, when there are conflicting goals (e.g. benefit

maximization and risk minimization) only some of which can be achieved, the utility func-

tion specifies the appropriate trade-off. Second, when there are several goals that the agent

can aim for, none of which can be achieved with certainty, utility provides a way in which the

likelihood of success can be weighed up against the importance of the goals.
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Figure 2.5: Utility-based agent architecture

Learning agents

Turing (1950) noted the huge amount of work it takes to program an intelligent machine,

and concluded that it would be easier to build learning machines and then to teach them.

Another advantage of learning agents is their adaptabilityto unknown environments, and the

improvement of their behavior with time. The learning agents use a feedback, called critic, to

learn which perceptions of the environment are desirable, and in consequence, how to behave

(Figure 2.6). This means that agents’ learning consists of improving their future performance

based on their past critic, by optimizing their behavior such as to maximize their utility when

the world continues evolving as it has. This kind of learningmakes agents discover that some

kind of (but not exactly) condition-action rules always do the same thing, based on their

current knowledge.

A problem arises here: after some learning time, agents are always going to do

the same things because of these discovered rules, though the agents are not sure that these

actions are optimal, while they might have a better performance if they had a wider knowledge

of their environment. In fact, they should try to do very different actions than those prescribed

by their learning process. This exploration of new actions is insured by the problem generator.

These architectures are presented in ascending order of complexity and ability to

represent real-world intelligent agents: Learning agentsare surely more realistic than utility-

based agents, and utility-based agents are more realistic than goal-directed agents, etc. Al-
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though learning agents might be the most realistic architecture for human agents, the imple-

mentation of learning mechanisms can cause a dramatic decrease in computing speed (Russell

and Norvig, 1995). To compare the computing speed of learning and utility-based agents,

which is usually regarded as the second most realistic agentarchitecture, both approaches

were implemented in a simple separate agent-based model. The comparison of both showed

that even one of the simplest machine learning algorithms for agents, the k-nearest neighbor

algorithm, had a 10-fold lower computing speed than the utility-based approach. Thus, for

implementation in GH-LUDAS, the utility-based approach was chosen in order to keep the

computing speed within a reasonable range. However, as there is a debate about modeling

agents that behave in a way to achieve highest possible utility (i.e. purely rational behavior),

random errors within these decisions have been included to ensure bounded rational behavior.

Bounded rational behavior allows agents to choose actions with lower utilities than the opti-

mal one (see section 2.4.2). The reflex-based architecture is also highly suitable for modeling

state transitions of biophysical agents (Le, 2005). As such, the model of land-cover transfor-

mation for biophysical agents within GH-LUDAS was designedas a rule-based mechanism,

determining the conversions among land-cover types duringtime (see section 5.3.5).
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2.2.4 Relations, Operations and Operators

Relations among objects (including agents) in multi-agentsystems can be manifold. In gen-

eral, a relation consists of a database, which can be described by a matrix of the length of the

total number of objects. Each matrix value is an item of a tuple of possible relational values.

For instance, the tuple might comprise two options (’friend’, ’no friend’), and each pair of

objects is then assigned the respective value. Relations may not only exist among agents (e.g.

in the form of social networks), but also among agents and non-agent objects, and among

non-agent objects themselves. For instance, a relation among an agent A and an object O

might include the right of A to modify O, and a relation among non-agent objects could be

their distance to each other, which might have an influnce on their internal mechanisms. Fur-

thermore, relations do not necessarily remain static and can be modified during time through

system performance.

A second important characteristic of multi-agent systems concerns the use of op-

erations, which enable agents to perceive, produce, transform, and manipulate objects. In

multi-agent systems, perceptions represent the knowledgebase an agent has about objects.

The knowledge base consists of a collection of data about objects (including agents) accessi-

ble to the agent, which can be objective or subjective. Whileobjective knowledge comprises

data about the real state of objects, subjective knowledge can result from a mechansim which

distorts the perception of the real state of objects. Furthermore, the set of perceived objects,

both agent and non-agent objects, does not necessarily comprise the whole set of objects,

but can be confined to subsets individually for each agent. Inaddition, the range of data

about these objects accessible to the agent can be limited. For instance, the knowledge about

relations among the agent and other objects can be fully, partly or not accessible to the agent.

If agents are not endowed with a memory mechanism, which enables them to record

past data, the knowledge base of an agent is confined to the perceptions of only the current

state of objects (including himself). If an agent is endowedwith such a memory mechanism,

he can record past states, actions and reactions of himself and other objects. Even the knowl-

edge base of an agent can be accessible to other agents, whichmight result in situations of

’full knowledge’ (agent A knows that agent B knows that agentA knows, etc.), which are

often studied in game theory.

Based on this individual knowledge, agents make decisions according to their agent
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architecture as described in the previous section. The range of possible actions resulting from

these decisions comprises the deletion, the creation or modification of objects. The creation

of agents might be caused by a mechanism of reproduction, while the deletion of agents

might be due to dispatch. The modification of objects can include a spatial displacement or

an alteration of the objects’ internal state.

The combined ability of object perception and the (possible) subsequent manip-

ulation, regulated by the decision-making architecture, represents the set of operations of

agents. Non-agent objects react to these operations via operators, which Ferber (1995, 1999)

calls ’the laws of the universe’. Such operators update changes in states of objects, which

can be due to agent intervention or agent-independent processes, or both. However, such

operators are not only confined to non-agent objects. Agentscan also be subjected to ’laws

of the universe’, for instance to processes such as ageing ordeath. Changes resulting from

operators can further be perceived by other objects.

In summary, not only the internal architecture of agents is of concern in multi-agent

systems, but also the defined webs of interrelations among objects, including relations, per-

ceptions, actions and reactions. The high flexibility of multi-agent systems in designing these

interrelationships is one of the great benefits of this approach, and ensures its applicability

to many research domains and areas. Multi-agent systems have been used to study cell com-

munities, ant colonies, animal flocking, strategic military problems, etc As the modeling of

multi-agent systems relies on the specifications of agents’behaviors and interactions, which

result in emergent properties at the level of the system, agent-based modeling can be consid-

ered as one of the few bottom-up modeling approaches.

2.3 Computer platforms for MAS

The use of agent-based models models (ABMs) or individual-based models (IBMs) for re-

search and management is growing rapidly in a number of fields. For example, DeAngelis

and Mooij (2005) documented a steady, sharp increase in the number of ecology publications

using IBMs starting in about 1990. This growth is partly due to the ability of these models

to address problems that conventional models cannot, and partly to the growing number and

quality of software platforms for agent-based modeling (Railsback et al., 2006). In this chap-

ter, we review the most widely used computer platforms for agent-based modeling, based on
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a study of Railsback et al. (2006), and give a justification ofthe platform employed in our

study, which is NetLogo.

The most commonly used software platforms for agent-based modeling comprise

the Swarm (based on Objective-C or Java language), Repast, MASON, and NetLogo (based

on Java language). The first three plaforms belong to the ’framework and library’ platforms,

which were designed to make the design, implementation, anduse of ABMs more accessible

and efficient. Swarm in particular was designed as a general language and toolbox intended

for widespread use across scientific domains. Swarm’s developers started by laying out a

general conceptual approach to agent-based simulation software. Therefore, Swarm was im-

plemented as a framework - a set of standard concepts for designing ABMs - along with a

library of Objective-C software implementing this framework. Repast was started as a Java

implementation of Swarm but has diverged significantly fromSwarm. One objective of the

Repast project was to make it easier for inexperienced usersto build models, including a

built-in simple model and interfaces, which support the process of model construction for

beginners. MASON is being developed as a new Java platform, designed as a smaller and

faster alternative to Repast, with a clear focus on computationally demanding models with

many agents executed over many iterations. Design appears to have been driven largely by

the objectives of maximizing execution speed and assuring complete reproducibility across

hardware.

These framework and library platforms have succeeded to a large extent because

they provide standardized software designs and tools without limiting the kind or complexity

of models they can implement, but they also have well-known limitations. Tobias and Hof-

man (2004) recently reviewed Java Swarm and Repast (along with two less-used platforms),

ranking them numerically according to well-defined criteria. In their study, they indicate that

important weaknesses include difficulty of use; insufficient tools for building models, espe-

cially tools for representing space; insufficient tools for executing and observing simulation

experiments; and a lack of tools for documenting and communicating software.

The most recent development of MAS plaforms is the appearance of MAS pack-

ages. Differing from the framework and library plaforms, the MAS package is a collection of

primitives assembled with a standardized common user interface and provides a new environ-

ment for MAS modeling. NetLogo (Wilenski, 1999) is one amongfew new MAS plaforms.
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Its primary purpose was to provide a high-level platform that allowed students down to the

elementary level to build and learn from simple ABMs. However, recent versions of NetLogo

now contain many high-end capabilities (behaviors, agent lists, graphical interfaces, etc.) and

it is quite likely the most widely used platform for ABMs. Of all main currently used plat-

forms, NetLogo is the highest-level platform, providing a simple yet powerful programming

language, built-in graphical interfaces, and comprehensive documentation. It is designed

primarily for ABMs that contain mobile individuals in a gridspace with local interactions.

According to a recent evaluation of Railsback et al. (2006),NetLogo is highly recommended,

even for prototyping highly complex models.

In contrast to the other platforms, NetLogo almost completely separates the pro-

cesses of implementing and displaying a model. The modeler writes a program (in NetLogo

language) for behavior of agents and the gridded space on a ’Procedures’ page. On a sepa-

rate ’Interface’ page, the modeler can design an automatic animation of agent locations on

the space. Graphs and parameter controllers can be added to the interface via graphical and

menu-driven tools, along with simple statements in the software telling the interface when to

update. In the other programming platforms, the processes of implementation and displaying

of the model are not separated, with the instantiation of thedisplay or ’animation window’ re-

quiring several programming steps. Furthermore, the procedures of the motions of agents on

the display have to be implemented using lower-level operations in these platforms, whereas

in NetLogo agent motion can be simply implemented using a built-in method that moves

agents to a new location.

As users are highly interested in monitoring outcomes of themodel runs, it is also

useful to compare the strengths and weaknesses of the various platforms in producing graph-

ics of output indicators, output files and statistics. Histograms are particularly useful for

ABMs, because they can output the full distribution of some characteristic over all the agents.

Repast and Swarm have built-in histogram classes that are relatively easy to use, while MA-

SON does not yet provide such a class. In NetLogo, histogramsare created using drag-

and-drop and a menu on the interface page. Then, a simple codestatement specifies when

the histogram is updated. Regarding the provision of outputfiles, Objective-C Swarm and

Repast provide built-in classes to facilitate output of data to a file, and data recording actions

can be scheduled just like any other action, so that they takeplace at known times. Java
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Swarm and MASON do not provide file writing tools, so a Java class for file output must

be used. NetLogo provides simple primitives for opening andwriting to files, although their

ability to format and control output is limited; for example, there is no way to overwrite a

file instead of appending to it. As far as statistical calculations are concerned, Swarm has

a powerful tool for collecting summary statistics, and NetLogo also includes primitives that

provide all common statistics. Repast’s ’DataRecorder’ provides only an average, whereas

MASON even lacks tools for any summary statistics.

The most significant weakness of NetLogo is the slow speed in model execution,

whereas in most of the other aspects this platform exceeded the capabilities of the other plat-

forms, offering a convenient programming environment at the same time. Although execution

speed is relevant for the choice of an appropriate software platform, it has to be considered

that the most time-consuming part is, nevertheless, the modeling process, and not the execu-

tion of model runs. As such, the implementation of the model in Java and C programming

languages is much more time-consuming than the use of NetLogo primitives. Therefore, the

time spent by the model runs using NetLogo is leveled out by the comparably short time

spent for model development. Moreover, the rapid development of high speed CPU mitigates

the low speed of NetLogo excution. By virtue of this argumentand the other advantages

as outlined before, we decided to use NetLogo as a software platform to implement our

MAS/LUCC model in this thesis.

2.4 GH-LUDAS: A proposed conceptual framework for modelingLUCC

In this section, we will present a conceptual framework for the MAS/LUCC model devel-

oped in this thesis, called GH-LUDAS, in order to provide an understanding of the further

specifications in the subsequent chapters. This framework follows the synthesis of the cou-

pled human-environment as proposed by Haggith et al. (2003)and Freudenberger (1995).

This framework has already been used in the FLORES model (seeHaggith et al., 2003),

which aims to capture the interactions between rural communities living at the forest mar-

gin, thereby serving as a tool to explore the consequences ofalternative policy options. It

aims to model the dynamics of the interactions between the biophysical and socio-economic

components of rural communities at the forest margin. The ’glue’ that binds the biophysical

and socio-economic components together is human decision-making at the local level, which
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influence the performance of the biophysical components. Due to its high level of generality,

this conceptual framework can also be applied to the study ofland-use/cover change. As

such, this type of framework has been applied to the study of land-use/cover change in the

uplands of Vietnam (see Le, 2005), and now finds applicationsin several land-use studies at

the Center for Development Research (ZEF) in Bonn.

Like the framework as proposed by Le et al. (2008), the conceptual framework of

GH-LUDAS comprises four modules, namely the human, the landscape, the decision, and

the Global-policy Module (see Figure 2.7). The design and interrelations of these four com-

ponents are briefly described in the following.

2.4.1 Landscape module

The landscape environment (E) is usually implemented as a grid consisting of congruent cells,

whereby each of the human agents is located on a specific grid cell within E. The non-agent

objects are usually implemented as grid values for each cellwithin E, i.e. each type of ob-

ject is represented by an own variable with values for each specific cell of E. For instance,

the object of houses might be represented by a variable of itsown, being 1 for cells covered

by houses, and 0 for other cells. Relations thus exist among human agents and cells, e.g.

ownership of a cell, whereby human agents operate on these same cells through a set of oper-

ations Op (see section 2.2.). Operators (section 2.2) then define the internal mechanisms and

responses to these human actions on the landscape cells, e.g. internal ecological processes.

The landscape environment is represented by a collection oflandscape agents, i.e. intelligent

congruent land patches (30 m x 30 m) with their own attributesand internal sub-models of rel-

evant ecological processes (i.e. Operators). The attributes are represented by state variables

of each patch, including the specific land-use and land-cover type, biophysical attributes (e.g.

topography), accessibility variables (e.g. distance to river), tenure variables (e.g. owner), and

yield variables indicating the total yield produced on the respective patch. Whereas topo-

graphical and accessibility variables are static in time, the variables of land use/cover, tenure

and yield are dynamic over time and space.

Relevant ecological processes encoded within the architecture of landscape agents

comprise agricultural production, land-cover transformation, and livestock dynamics. The

agricultural productivity models consist of functions calculating the yield for a single patch
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Figure 2.7: Conceptual framework of GH-LUDAS

seasonally, in response to its current state and the input decisions of the land manager (i.e.

the household agent that is cultivating the patch), therebyupdating the patch variable of yield

response. The land-cover transformation model built into every landscape agent enables it to

change its categorical variable of land cover, due to natural growth and changes in land use.

Within the livestock dynamics model, the total number of livestock is determined in response

to forage productivity, which, in turn, is dependent on annual rainfall and land-cover patterns.

2.4.2 Human and Decision Module

The Human Module is considered in terms ofhousehold agents, i.e. heterogeneous farming

households with their own state and decision-making mechanisms about land uses (i.e. the

Operations Op). The state variables of the household include a Household Profile and a

spatial perception radius within the landscape, called Landscape Vision. The Landscape

Vision consists of a collection of landscape agents locatedaround the compound house of the

household agent, on which the agent has full information andcan set actions. The Household

Profile comprises a list of household variables, such as age,household size, income, land
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resources, and the household’s access to certain policies.Generally, the variables of the

Household Profile as well as the policy-related variables change over time, but in response

to different factors. Whereas some variables undergo a natural change (e.g. age), others are

updated in response to agricultural activities (e.g. income). Policy-related variables change

according to the values of the policy parameters, which are set by the model user.

The decision-making mechanisms are represented by a separate module, integrated

in the architecture of the human agent. The mechanisms, which are based on the concept

of the utility-based agent architecture, works by taking inputs from the household profile,

policy-related variables, and the state variables of the perceived landscape patches. The de-

cisions modeled by the decision-making mechanisms mostly represent choices among a dis-

crete set of options (e.g. the choice among several land-usetypes for a given patch), using a

utility function to assess the benefit of each option. Utilities for each choice are calculated

using multinomial logistic (m-logit) regression, which can be formally expressed as:

Utility p =
eαp+

∑
i βipVi∑

q eαq+
∑

j β jqV j
(2.1)

whereUtility p is the utility of optionp, having a value between 0 and 1,αp a constant, and

βp the so-called preference coefficient of optionp. When designing purely rational agents,

the option with highest utility would be chosen by the agents. However, as purely rational

behavior is rightly regarded as unrealistic, the choice models are designed to also consider

options with a lower utility, thus allowing bounded rationality of household agents. This way,

within GH-LUDAS, the utilities are interpreted as probabilities between 0 and 1, such that

optionp is only selected with a probability ofUtility p.

The Decision Module is universal for all household agents, in terms of its logical

sequence. However, as the agent’s state and the preference coefficients of the utility functions

are individual-specific, decision outcomes result in a highly diverse pattern, thus representing

heterogeneity among land users with respect to land-use decisions.
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2.4.3 Human-environment linkages and interactions

Human-environment linkages are mainly characterized by tenure relations and a percep-tion-

response loop (Figure 2.7). Tenure relations between household agents and landscape agents

consist of rules determining the household access to land resources (e.g. ownership and

use rights over land). Ownership is a tenure relation applied specifically to an individual

household, i.e. the holder of the land. Village territory isa tenure relation applied specifically

to a group of household agents, i.e. those households that share the same village.

The perception-response loop involves the flows of information and matter among

the human and the environmental modules. Perception corresponds to the perceived spatial

status of the Landscape Vision of a specific household, whichis fed into the decision model,

together with household-specific data, to calculate the anticipated benefits of certain land-

use actions. Based on these calculations, the household agent responds by setting actions on

his perceived environment, represented by decisions of land-use type and agricultural inputs.

Subsequently, the state variables of the considered patches are updated, either directly (e.g.

land-use type), or indirectly through the application of biophysical sub-models (e.g. yield

response, land-cover transition). Finally, these updatedstate variables are fed again into the

household’s perception, thus forming an annual loop of perceptions and actions.

2.4.4 Global-policy Module

The Global-policy Module represents relevant factors thatare set externally by the model

users, and are thus not a result of the internal mechanisms ofthe model. These external

parameters consist of parameters describing the rainfall regime (e.g. annual precipitation),

the population dynamics of the household agents (e.g., carrying capacity, growth rate), and

parameters of some relevant policies (i.e. household access to credit and construction of

new dams). These factors directly modify either landscape-related variables and household-

related variables, or alter the interaction modes between household and the environment (see

Figure 2.7). For example, parameters regulating the accessto credit directly updates the

policy-related variables of the household, whereas dam construction affects state variables

of the landscape through changing the biophysical variableof land cover and irrigability.

Through the perception-response loop, such changes of state variables on either the human
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or the environmental side are carried through the model, thus significantly modifying the

functioning of the whole system.

This proposed agent-based architecture allows integration of diverse human-, environ-

ment- and policy-related factors into farmers’ decision making with respect to land use and

presentation of subsequent accumulated outcomes in terms of spatial and temporal patterns

of the natural landscape and population. Furthermore, aspects of the dynamics and struc-

tural complexity exhibited by land-use systems are reflected by this framework, including the

representation of heterogeneous landscape and household agents, spatial and temporal inter-

actions among these agents, and the consideration of feedback loops such as the perception-

response loop. The representation of nested hierarchical levels and scale-dependent processes

was also considered on both the landscape and the human side.Due to the complexity of the

integration of hierarchies within the model, this aspect was not presented in this section, but

will be outlined in the main chapter of model description (Chapter 3).

2.5 Materials and methods

The framework described above is a general framework for modeling LUCC, independent of

the specific conditions of the study area. However, further specifications of the model will

highly depend on the local conditions and processes in the study area. Thus, within the fol-

lowing sections, we will give a short description of the study area, justify its selection, and

present the sources and generation methods for the data required for model implementation.

2.5.1 Selection of the study area

The study area comprises the Ghanaian part of the Atankwidi catchment in the Upper East

Region of Ghana; the Atankwidi is a tributary of the White Volta located between Navrongo

and Bolgatanga, with its upper reach in Burkina Faso (Figure2.8). The catchment lies at

10◦31′30′′N latitude, and 0◦56′0′′E longitude, covering an area of 275km2, whereby the

Ghanaian part covers an area of 159km2.

The catchment comprises the villages of Kandiga, Sirigu, Yuwa, Zoko and parts

of Sumbrungu and Mirigu. This area was inhabited by 41.091 people in 2000 (Ghanaian

Population Census, 2000). Out of these, 47 % were males, leaving about 53 % females.
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This difference in male and female numbers is mainly due to a higher migration rate among

the male population, confirming the hypothesis that migration is part of the survival strategy

among males in terms of income generation. The major activities of the local people are

confined to agriculture, livestock rearing, and non-farm activities such as trading or handi-

crafts. As most of these livelihood activities in the area are highly dependent on the services

of land and water resources, any changes in the land productivity and pattern of land use and

land cover are thus highly interrelated with the living conditions and well-being of the local

population.

Apart from human influence, local land use and land cover is considerably depen-

dent on climatic conditions. The study area falls within theSudan-Savannah climate zone,

which is characterized by a distinct rainy season lasting approximately from May to Septem-

ber, and a dry season from October to April (Martin, 2005). Land-use and land-cover patterns

differ widely between the two seasons, with most of the agricultural activities confined to the

rainy season. Within this season, the major part of the land surface is covered by small-farm

agriculture, with patches of grassland that are mainly usedas grazing plots for local live-

stock. Only 8.3 % of the land surface can be categorized as bare land in this season, being

inappropriate for agricultural use. Due to the extensive use of land for agricultural purposes,

the forest area has shrinked to only 3.1 % of the land surface,and mostly consists of ’sa-

cred groves’ along the river, i.e. holy forest patches traditionally protected, and forested hills

with steep slopes. In the dry season, cultivation is only possible with irrigation, mostly be-

ing confined to small areas along the riverside, where groundwater tables are relatively high.

The main irrigation technologies comprise bucket irrigation and pump irrigation either using

hand-dug wells or large dugouts to reach the groundwater table. Due to the harsh climatic

conditions in this season, bare soils are prevalent in the remaining area.

This study area was chosen for the following reasons. First,the area is located in

one of the poorest regions of Ghana, which implies that a reliable evaluation of the impact of

policy interventions on local socio-economic and ecological conditions can be of importance

to ensure a sustainable improvement of local living conditions. Second, the local land-use

patterns and socio-economic conditions are representative for other similar areas in the Upper

East Region, which makes the results transferable to other areas to some extent. Third, other

studies covering the hydrological settings and dynamics have been conducted in the study
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area, which could provide interesting results when used in combination with the results in

this study. The findings of hydrology and groundwater availability can be compared to the

actual agricultural water consumption. Finally, as data had to be collected during several field

surveys, a good research infrastructure gave the final turn for selecting this area.

We defined the extent of the study area using both natural and institutional bound-

aries. In the north, the study area is restricted by the border to Burkina Faso, while the south

part is confined by the drainage area, major roads, and village borders, which coincide almost

completely. It was important to delineate the study area along village borders to ensure that

local farmers do not, or very rarely, use land outside the study area. But since an exact map of

such village borders was not available, finally the drainagearea for the catchment was chosen

to represent the spatial extent of the study area.

2.5.2 Biophysical characteristics and data generation

Biophysical characteristics (e.g. climatic, soil, and water-related factors) of the environment

are usually important drivers of land-use/cover change. In order to integrate biophysical

drivers in GH-LUDAS, relevant biophysical drivers needed to be identified, described, and

mapped for further use in GH-LUDAS. In the following, a description of biophysical condi-

tions in the study area is given, followed by a presentation of data sources and data processing

methodologies.

Climate

The study area falls within the Sudan-Savannah climate zone, which is characterized by high

temperatures and a mono-modal rainfall distribution with adistinct rainy season lasting ap-

proximately from May to September, and a dry season lasting from October to April (Martin,

2005). In the rainy season, south-west monsoon winds are prevalent, coming from the At-

lantic Ocean, thus being responsible for humid and wet conditions during the rainy season

period. These winds reach their maximum northern extent in August (Yaro, 2000). In the dry

period, north-east trade winds blowing from the Sahara desert - called the ’Harmattan’ - result

in warm, dusty and dry conditions, and reach their maximum southwards extent in January.

The long-term mean annual rainfall in Navrongo is 990 mm as calculated from monthly rain-

fall data for the years 1961-2001 (Martin, 2005). Regardingagriculture, the single rainfall
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Figure 2.8: Location of the study area

regime received in this area limits full utilization of the physical capability of the people, as

most of them are employed only during the short wet season andunemployed for the rest of

the year (Yaro, 2000).

Temperatures are considerably higher than in the rest of thecountry, with mean

monthly temperatures ranging between 18◦ C and 38◦ C. Temperatures are high throughout

the year, with the lowest daytime temperatures coinciding with the peak of the rainy sea-

son, while the lowest night-time temperatures occur in December and January, caused by the

Harmattan wind. The Harmattan period records the highest diurnal range of temperature, as

nights are cool while days are very hot as a result of the absence of clouds. Vapor pressure

during this period falls considerably to less than 13 000 hPa, and relative humidity rarely

exceeds 20 % during the day but may rise to 60 % at nights (Report by Department of Geog-

raphy and Resource Development, 1992).
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Figure 2.9: Annual temperature and rainfall pattern in the study area

Soils

According to soil maps of the Ghanaian Soil Research Institute in Kumasi, there are six

soil associations prevalent in the study area: The associations of Tanchera, Kolingu, Nan-

godi, Kupela-Berenyasi, Bianya, and Tongo, and the Siare-Dagare Complex along the river

banks (Figure 2.10). Following the FAO soil classification system, these associations can

be grouped into three soil types, namely Lixisols (Tanchera, Kolingu, Nangodi and Bianya),

Leptosols (Tongo and Kupela-Berenyasi), and Luvisols (Siare-Dagare Complex), which de-

veloped over granites, sandstones and Precambrian basement rocks, respectively (Martin,

2005).

The soils over granites and sandstones have mainly light topsoils varying in texture

from coarse sands to loams, and heavier subsoils varying from coarse sandy loams to clays

with a variable amount of gravel. Soils developed over basicrocks and most of those in the

valley bottoms have heavier topsoils and subsoils (Adu, 1969). For about five months of

the year, the soils receive a total rainfall of about 1000 mm,whilst for the remaining seven

months they dry out almost completely. This alternation of wet and dry conditions causes

intense leaching of nutrients out of the topsoils and promotes the irreversible hardening of
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Figure 2.10: Soil associations in the study area

the subsoils, which leads to the development of iron pans.

Vegetation

The study area is a typical savannah parkland, which is a savannah landscape highly modi-

fied by agricultural use and settlements, thus being an extreme anthropogenic landscape. The

natural tree flora has been severely depleted, apart from small forest patches, mostly con-

sisting of ’sacred groves’ along the river banks. Almost every natural tree species, except

those with economic or social value, has been systematically eliminated from the farming

areas. Such economic tree species includeVitellaria paradoxa(55.5%),Diospyros mespili-

formis (15.5%),Acacia albida(9.5%),Bombax costatum(2.5%),Parkia biglobosa(2.0%),

andMangifera indica(2.0%). According to field interviews, these tree species are usually

not cut down during land preparation, which is why they became more common over time,

giving the impression of planted trees.

Groundwater

Groundwater levels in the study area vary between 1 to 29 m below ground (Martin, 2005),
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Figure 2.11: Spatial pattern of tree density in the study area

whereby high water tables during the dry season allow irrigated cultivation, mainly by using

hand dug wells and dugouts. Except for irrigation, groundwater is withdrawn by boreholes

for domestic purposes, such as drinking, cooking, washing,for watering livestock and for

building and repair of loam compounds. Use of groundwater for irrigation is currently min-

imal (Martin 2005). Based on estimations by Martin (2005), total groundwater abstraction

in the study area amounts to 167,000m3/y (28 %) through hand dug wells/dugouts, and

427,000m3/y (72 %) through boreholes. This equals a total groundwater abstraction of 3.6

mm/y. A long term average groundwater recharge of 60 mm/y compares to the total current

groundwater abstraction of 3.6 mm/y in the study area (Martin 2005). Groundwater recharge

is therefore currently not a limiting factor for groundwater resources development. However,

spatial variations of groundwater table and recharge play adecisive role for irrigation-related

land-use choices, e.g. the search for suitable land for irrigation.

Data sources

In GH-LUDAS, climate was considered in terms of its temporalbut not its spatial variability,
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as the study area can be assumed to be uniform in terms of climatic conditions, due to the

area’s relatively small size. Instead, we considered long-term changes in annual precipitation,

as this climatic factor plays a major role for local agriculture. These long-term rainfall data,

i.e. the annual decrease in precipitation in mm/y, averaged for the next 30 years, were derived

from the IPCC data distribution center (www.ipcc-data.org). The values were calculated

based on monthly means of daily precipitation (mm/d) within the period 1960 - 2100 as

computed by the CSIRO-Mk2 model for each of the four IPCC SRESscenarios. CSIRO-

Mk2 is a global grid-based model, with a spatial resolution of 625 km by 350 km. Based on

the computed annual rainfall reduction for the pixel the study area is part of, annual rainfall

for the next 30 years was calculated and included in the calculations of biomass and crop

productivity in GH-LUDAS.

A soil map of the six soil associations in the study area was derived from Adu

(1969), which was scanned and digitized. Using this map, a soil fertility and a soil texture

map were generated by assigning a specific fertility and texture value to each of the soil

associations, respectively. The fertility class, rangingfrom ’Very Good’ to ’Very Poor’, and

the topsoil textural class of each soil association was extracted from Adu (1969), the latter

of which was ranked based on the USDA textural classification, which identifies 12 major

soil classes, and 9 further classes for loam and clay (see Brown, 2003). According to this

rank, each textural class was assigned a value between 1 (i.e. coarse sand) and 21 (i.e. clay).

Accordingly, each fertility class was assigned a value between 1 and 5, representing the

five fertility classes ranging from ’Very Good’ (5), over ’Good’ (4), ’Moderately Good’ (3),

’Poor’ (2) to ’Very Poor’ (1).

A land-cover map was generated based on a ground-truth data set and two satel-

lite images of the study area, including a Quickbird image (DigitalGlobe 2007), and an

ASTER image (USGS and Japan ASTER Program, 2007), which can both be acquired from

the GLOWA-Volta Project Geo-database at the Center for Development Research (ZEF) in

Bonn (www.glowa-volta.de/results_geoportal.html). To interpret these scenes in terms of

land cover, a ground-truth survey was conducted in the studyarea in August 2006. Within

the course of this survey, over 1100 GPS points were taken andassigned one of the main

land-cover classes ’grassland’, ’cropland’, ’forest’, ’bare land’ , and ’water’. The range of

these classes had been identified within a 3-days preliminary land-cover survey. The ground-
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truth survey itself was carried out in daily field visits, whereby the starting point of the GPS

measurement was selected on the map prior to each visit to ensure a uniform coverage of the

study area by GPS points. From each starting point, measurements were taken every 100 m

along all four bearings up to a distance of 3 km to the startingpoint. Based on this ground-

truth data set and the satellite images, supervised classification was applied to generate a local

land-cover map (for details see section 5.3.1).

Spatial data on groundwater recharge and groundwater levelwere derived from time

series simulations of a version of the WaSiM-ETH water balance model for the Atankwidi

catchment by Martin (2005). For the year 2004, simulated groundwater recharge (in mm/month)

for each month and groundwater table (in m below ground) for each day were used. These

data, which were produced by WaSim in binary code with a resolution of 100 m x 100 m, were

converted to GIS raster layers with the same resolution. Using the map calculator in ArcView

GIS 3.2, average monthly groundwater recharge (mm/month) and average groundwater table

(m below ground) were calculated and mapped for both seasons.

Topographic features of the study area were derived from a digital elevation model

by Le (2006) for the Atankwidi catchment, which had been downscaled from USGS SRTM

Elevation data (at the resolution of 92.53 m) to resolutionsof 15 m and 30 m. The DEM is

available at the GLOWA-Volta Project Geo-database at the Center for Development Research

(www.glowa-volta.de/results_geoportal.html. Maps of topographic features forthe study area

were calculated from the DEM using the surface procedure in ArcView, comprising elevation,

upslope contributing area, slope degree, and wetness index. The definition and relevance for

land-use/cover change of each of these factors is given in section 5.2.1.

2.5.3 Population characteristics and data generation

The small river basin of the Atankwidi is inhabited by a mainly rural population that in their

majority belongs to the Kassena and Nankana ethnic groups. The three main religious groups

in the study area comprise the Christian, the Islamic and thetraditional religions. Traditional

religion is the most common form of worship in the region (46.4 %), followed by Christianity

(28.3 %) and Islam (22.6 %). To date, the chieftaincy institution has matured throughout the

region, and each village is headed by a chief normally nominated from among a royal family.

The chieftaincy system is characterized by a strong hierarchical structure, i.e. political power
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is exercised through hierarchical levels of authority, from the chief over section and clan

heads down to sub-clan heads.

At the lowest level, authority is exercised by the compound head, who is the person

in charge of a sub-unit of the clan living together in a compound. In the study area, these

compounds are not clustered together, but are rather evenlyscattered all over the catchment.

The compounds usually give shelter to several households (in average 3.1 households) of the

same family. With a total population of about 41000 people (in 2000) and an average of

7.2 persons per household, about 5700 households lived in the study area in 2000. The age

structure in the study area is characterized by a large portion (about 48 %) of children (i.e.

persons under 18). This large fraction results in a very low mean age of the population (about

24 years), while the mean age of the household head lies higher at 46 years. Education levels

seem to have increased strongly during the last decades, as 95 % of persons under 18 have

attended at least primary school, while 75 % of the householdheads, who mostly belong to

the next higher generation, have never been formally educated.

In average, each household owns 2.4 ha of land, which amountsto 0.34 ha/person.

Of this area, 68 % is cultivated during the rainy season in average, while the remaining area

is left bare as grazing land. The average total gross income from rainfed cultivation amounts

to 930 US $, while further 260 US $ are generated by non-farm activities during this season.

In the dry season, average total gross income amounts to 510 US $, while in this season, the

variation in income is much higher than in the rainy season. This is due to the fact that a part

of the households (38 %) is engaged in irrigation, which is a highly profitable activity. In

average, about 756m2 are cultivated by these households through irrigation.

Most of this information was derived from the data set generated during this study.

To obtain these data needed for the implementation and design of GH-LUDAS, two socio-

economic surveys were conducted in the study area. In the following, the identification of

the relevant survey unit, the sampling strategy and the survey design and realization are pre-

sented.

Identification of survey unit

As family relations are highly intervowen in the study area,the family unit for the survey

had to be appropriately defined. For our study, the relevant family unit should represent the
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decision-making entity regarding land use and other activities. Although the compound head,

who is the head of the whole compound family, is in charge of the entire land, it made more

sense to consider the single household as the relevant unit for the socio-economic surveys,

since field investigations had shown that the compound land was usually divided among these

households and the decisions about land use were mostly independent, apart from social in-

fluence. However, due to interwoven family relations among the inhabitants of a compound

and a complex land-tenure system, it was difficult to define the term of household appro-

priately. The Ghanaian Survey Department usually defines a household as ’the number of

people eating from the same pot within a compound’. But this definition was problematic

for our study, since family members, each in in charge of own land, were found to still ’eat

from the same pot’. Therefore, we defined a household as all people who are dependent on

the person who decides about and manages a piece of land, whomwe will call the household

head. Dependent people are then those who are fed by the yieldfrom the household head’s

land, and who do not manage own land. Thus, a household is defined by all persons who ’eat

from the sameplot’. This definition of household was then used for identifyinghousehold

members, their activities and their contribution to household income during the interviews,

which were conducted with the respective household head in all cases. Given the homogene-

ity in livelihood conditions (i.e. housing, food availability, etc.) of the population, the sample

size was set to 200 households, which had to be chosen from different compounds in order to

meet about 5 % of the compounds in the study area.

Sampling strategy

Since the later data analysis would be based on statistical methods, it was necessary to choose

a random sampling strategy. However, not the full set of these 200 households was chosen in

a random way, as a part of this sample was specifically dedicated to the assessment of policy

impacts. Within GH-LUDAS, these policies include the strategies of dam construction and

credit access, which were identified to be the most relevant policy interventions with respect

to land use (see Chapter 6). But since functioning dams were absent in the study area, and

access to credit minimal, parts of the sample were not chosenrandomly, but related to the

access to these policies. This way, the sample was split into140 households to be selected

in a random way, 30 households that had once obtained credit,and 30 households from the
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neighboring Anayere Catchment, where there were operational dams.

To identify the 140 households randomly, a spatial samplingmethod was chosen,

as lists of names of household heads in the study area were notavailable. In order to make

sure that the composition of the sample would reflect the overall composition of the popu-

lation in the study area, a stratification method for the sample had to be applied. For this,

the study area was divided into 8 units, demarcated by major roads and the main river to

serve as landmarks for the sampling, to be directly carried out in the field. For each of these

units, the single compounds were digitized using a high-resolution Quickbird image, which

made the compounds easily identifiable. According to the number of compounds in each unit,

the percentage of households selected was calculated for each unit. By using this strategy,

an equalized representation of the population was ensured,and, based on this stratification

method, random households could be identified in the field (Figure 2.12).

Survey design and realization

As the climatic conditions cause differences in land-use behavior and livelihood strategies

between the dry and the rainy season, two socio-economic surveys were conducted, one for

each season. The dry-season-related survey was conducted in July 2006, while the rainy-

season-related survey was conducted after the final harvestin late November 2006. In both

surveys, the same set of selected households (200 households) was interviewed, and the same

questionnaires were used for all households. The main targets of the two surveys were the

generation of a household-based data set and a plot-based data set. The purpose of the gen-

eration of a household-based data set was to characterize household agents in terms of their

household state (e.g. household assets, livestock, etc.) and their decision-making sub-models,

while the plot-based data set was used to characterize the biophysical state (e.g. land use) and

the biophysical sub-models (e.g. agricultural productivity) of landscape agents.

Dry-season survey

The main goal of this survey was to develop i) the basis of the plot-based data set for each

household, i.e. to record land-use type, location and size of each cultivated plot (in either

season 2006), ii) to collect data on management, agricultural input (i.e. labor, chemicals) and

yield for each plot cultivated in the dry season 2005/2006, and iii) to record engagement in
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Figure 2.12: Locations of 140 randomly selected householdsin the Atankwidi catchment

and labor allocation to each of the income-generating non-farm activities. Since information

from farmers about their plot sizes turned out to be unreliable, the single plots were measured

by GPS, i.e. waypoints were taken by walking around the plot,and its size finally calcu-

lated using the XTools extension of ArcView GIS 3.2. In total, 814 plots were measured,

accounting to about 4 plots per farmer in average.

Both the relevance to land-use change and the applicabilityof the questionnaire

were examined before finalizing the questionnaire. The relevance of information was as-

sessed with help of LUCC modeling expert Dr. Quang Bao Le (Center for Development

Research), followed by the necessary modfications of the contents of the questionnaire. The

way of data acquisition and the form of questions was improved under assistance of social

scientists, local experts, and field experiments. The survey itself was carried out by four enu-

merators, who had been educated and trained in field exercises in the proper application of

the questionnaire and the use of GPS units for plot measurement.

To ensure a stratified distribution of the random 140 interviewees within the catch-

ment, the households were contacted and selected accordingto a specific random sampling
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procedure one day before the interview. According to the number of households to be in-

terviewed in each unit (see above), interviewees were selected randomly within each unit in

the field. Using the demarcations of the unit for field orientation, households were selected

systematically every 1.2 km along certain bearings by usingGPS on a motorbike. Compro-

mises had to be made due to unpassable rivers and rocky areas and also due to the necessity

to avoid large distances between the households, as the enumerators were only equipped with

bicycles. The remaining 60 households, which comprised households with access to credit

and reservoir cultivation, were organized by contact persons. Here, a random approach was

impossible, due to the low number of eligible candidates andthe fact that information on

credit and those who obtained some was strictly confidential; thus these persons had to be

organized by a confidant.

Rainy-season survey

While the focus of the dry-season survey was mainly on dry-season activities and plot mea-

surements, the contents of this second survey had a broader scope and were more extensive

than that of the previous one. The decision to shift the main interview part to the second ques-

tionnaire was based on the fact that farmers in the study areawere usually less occupied after

the end of the rainy season, which ensured a more relaxed interview atmosphere and thus a

higher reliability of information. The range of questions in this questionnaire covered i) plot-

based data for the last rainy season (e.g. management, laborinput, crop yield), ii) income data

(e.g. from non-farm activities), iii) livelihood data (e.g. demographic structure of household,

household assets), and iv) policy access (e.g. extension service, credit access). The kind and

range of questions within these blocks were selected according to the experiences during an

informal interview campaign conducted before the survey.

In order to ensure an accurate recording of the plot-based information, a reliable

method for the identification of the single plots during the interviews had to be developed.

Detailed digital maps of the plots of each household had beenprepared prior to the survey,

which facilitated the communication between the interviewer and the interviewee regarding

the plot identification. These maps were developed on the basis of the GPS measurements

of the first survey, using ArcView GIS 3.2. In order to increase the identifiability of the

plots other objects like streams and roads were also mapped,serving as additional reference
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features. Finally, the mapped plots were labeled with different colors, each color represent-

ing a specific land-use type, which further eased the description of certain plots during the

interviews.

The six enumerators who conducted the survey were trained touse these maps prop-

erly, i.e. to identify the bearings of the various plot locations and to indicate them to their

interview partners. The training also comprised exercisesin plot description in terms of

size, land use or distance to river or roads to enhance plot-based communication, including

training in the use of the questionnaire in the field as well asin supervised ’dry runs’. The

interviewees were localized with help of a GPS unit and contacted one day in advance to

make appointments for the next day’s interviews.
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3 SPECIFICATION OF GH-LUDAS

3.1 Introduction

One weakness of MAS is that it is not possible to establish a mathematical proof of the ob-

tained results (Bousquet and Le Page, 2004; Axtell, 2000). However, the model’s credibility

can be enhanced through several strategies. The first strategy is to assess the relevance of the

hypotheses of the model. As such, assumptions underlying the model should be clearly stated

and justified. We will follow this strategy throughout the model specifications (Chapters 3

to 5). In addition, we present descriptions of the conditions and practices as observed in the

study area, thereby enhancing the credibility of the model assumptions.

The second strategy is to provide a rigorous presentation ofthe structure of the

model (Le et al., 2008; Bousquet and Le Page, 2004) to providea transparent model descrip-

tion, such that the internal mechanisms can be easily retraced. This way, the specifications of

the model focus on two aspects: i) system architecture and ii) system implementation (Cioffi-

Revilla and Gotts, 2003). Accordingly, we will present a fully parameterized architecture

of GH-LUDAS based on the conceptual model described in Chapter 2, and will outline the

simulation protocol for this architecture, including the initialization of the model and the

time-loop procedure run during simulation. We will elaborate the system architecture and

model implementation as follows:

• The Human Module represents the system of human population in which farming

households are treated as human agents, endowed with agent-specific variables, pa-

rameters and connected to a model of land-use decision-making (Decision Module).

• TheLandscape Modulerepresents the system of the landscape environment in which

congruent land patches are considered as environmental agents, endowed with own

parameters and biophysical sub-models.

• The Decision Module is a decision-making routine integrated into the human agent

simulating household-specific land-use behavior.

• TheGlobal-policy Module is an external module in which model users can set the val-
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ues for selected policy and demographic factors under IPCC climate scenarios, thereby

exploring alternative pathways for land-use/cover and related socio-economic condi-

tions.

• Thesimulation protocol of GH-LUDAS which delineates the sequence of sub-procedures

during simulation runs.

3.2 System of human population: the Human Module

The Human Module represents the human part of the coupled human-environment system

underlying land-use and land-cover change. The dynamics ofthis module emerge from the

local interactions between household agents and their immediate environment. Since these

dynamics are scale dependent, with different processes acting at different levels, the human

system is designed as a hierarchy of three interrelated levels of organization: household agent,

groups of household agents, and the whole population (see Figure 3.1). The process of land-

use and land-cover change at the highest level of the whole population is then the result

of the interactions at lower levels, which represent real-life individual (and group) land-use

behavior.

The household agent represents individual farming households within the study area

(section 2.5.3). The structure of an individual household agent comprise four components: i)

a data set of household variables (called Household Profile), which play a role in the land-

use decision-making processes and other model routines, ii) a rule set defining the changes

within this set of these household variables (called Internal Rules) iii) the agent’s Landscape

Vision, a subset of the whole landscape in which the agent canact on and interact with

other agents, and iv) the Decision Module, a complex of procedures mimicking decisions

a farming household has to make, e.g. land-use choice or the decision to get involved in

irrigation farming. These decisions are dependent on both the Household Profile, the policy

parameters as well as on the state of the agent’s Landscape Vision.

Groups of household agents are collections of household agents with a similar liveli-

hood typology, thus being assumed to have a similar land-usebehavior. This group-wise

land-use behavior is represented by group behavior parameters, which have been derived by

empirical group data. According to the group an agent belongs to, the group behavior pa-
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Figure 3.1: Integration of the Human Module in GH-LUDAS

rameters are fed into the agent’s Decision Module. Moreover, household agents can change

their agent group, and thus their land-use behavior. At the end of each model step, which

is represented by one year, a household agent is allocated tothe group that has the highest

similarity with the agent. If an agent changes his agent group, he will also adopt the new

behavior parameters, which will in turn affect his decision structures. Thus, the agent groups

play a crucial role in this model of land-use/cover change, as they represent the change in

land-use preferences among household agents during time.

The population is the collection of all agents, and its pattern is the emerging result

of the processes at the lower levels of the hierarchical system. Statistic procedures are cal-

culated to analyze the characteristics of the population during time, such as mean total gross

income and the Gini Index of income distribution.
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3.2.1 Structure of the household agent

As already outlined above, the structure of the household agent is as follows:

Household Agent= (Household Profile, Internal Rules, Landscape Vision, Decision

Module)

In the following, we will describe all of these four components in detail, and introduce the

range of variables used within the model of the household agent.

Household Profile

The Household Profile (Hprofile) includes seven sub-types of variables: social identity and

livestock (Hsoclive), human resources (Hhuman), land resources (Hland), financial resources

(Hincome), environmental variables (Henv), irrigation variables (Hirr), and policy-related at-

tributes (Hpolicy):

Hprofile= {H soclive, Hhuman, Hland, Hincome, Henv, Hirr, Hpolicy}

The social identity and livestock factor (Hsoclive) includes age of the household head (Hage),

village code (Hvillage), the number of wives of the household head (Hwives), the number of

cattle belonging to the household (Hcattle), the livestock index (Hlivestock), and the group

membership (Hgroup):

Hsoclive= {H age, Hvillage, Hwives, Hcattle, Hlivestock, Hgroup}

The agent’s human resources (Hhuman) consist of household size (Hsize), labor availability

(Hlabor), the dependency ratio (Hdepend), and Hpool dry and Hpool rainy, which are the labor

pool in the dry respectively in the rainy season (in labor days). The dependency ratio is the

ratio of labor availability and household size, representing the composition of workers and

non-workers in the household:

Hhuman= {H size, Hlabor, Hdepend, Hpool dry, Hpool rainy}

Household land resources Hland comprise six variables including total area owned by the

household (Hholdings), total area owned per capita (Hholdings per cap), cultivated area in the dry

season (Hcult dry), cultivated area in the rainy season (Hcult rainy), and land-use composition

vectors for each of the two seasons ([H% i dry], i = (1 . . . N)) and ([H% i rainy], i = (1 . . . M)):
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Figure 3.2: Household Profile

Hland= {H holdings, Hholdings per cap, Hcult dry, Hcult rainy, [H% i dry], [H% i rainy]}

where i indexes the dry-season respectively the rainy-season land-use types.

The factor of financial resources of the household (Hincome) comprises total gross income

per capita (Hgross per cap), gross and cash income in the dry season (Hgross dry) and (Hcash dry)

respectively, gross and cash income in the rainy season (Hgross rainy) and (Hcash rainy) re-

spectively, as well as an income composition vector of income from rainy-season cultivation

([H%j], j = (1 . . . M)), with j indexing the rainy-season land-use types:
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Hincome={H gross per cap, Hgross dry, Hcash dry, Hgross rainy, Hcash rainy, [H%j]}

The environmental variables (Henv) include distances from the compound of the household

to main river (Hdist river), to dams (Hdist dams), and to water sources in general (Hdist water),

which represents the distance to irrigable areas and is calculated as the minimum of Hdist river

and Hdist dams:

Henv= {H dist river, Hdist dams, Hdist water}

The state of a household agent regarding irrigation (Hirr) includes five variables: i) a dummy

variable variable (Hdry dummy) indicating if the farmer is inherently capable of doing irriga-

tion, ii) a second variable reporting the kind of irrigationtechnology (Hirr method) for those

households with (Hdry dummy= 1), ranging from bucket irrigation, pump irrigation to dam

irrigation, iii) a variable indicating the percentage of household heads practicing irrigation

among the five nearest households, iv) a variable representing the number of years the farmer

has practiced irrigation (Hyears irr), and v) a dummy variable (Hpump) indicating whether the

household owns a motor pump.

Hirr = {H dry dummy, Hirr method, Hneigh irr, Hyears irr, Hpump}

The variables of Hpolicy include two variables: i) the credit status Hcredit, a dummy variable

indicating whether the household has obtained credit in thecurrent year, and ii) Hnr credits,

the number of credits the household has obtained so far.

Internal Rules

During model run, most of the model variables are subjected to changes over time. Changes in

the performance of the household module involve i) modifications of variables of the House-

hold Profile of agents, and ii) the creation and deletion of agents. The Internal Rules only

comprise simple rules defining the changes of household variables, while the deletion and

creation, which involve more complicated mechanisms, are described in the subsequent sec-

tion.

It is important to understand the kinds of changes the variables of Household Profile

undergo over time. We can categorize these variables into four categories: i) variables that
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undergo no change, ii) variables whose changes are due to theeffects of household agent

activities during simulation (e.g. changes in gross annualincome and/or land resources), iii)

variables whose changes are defined by natural events, independent of the agent’s actions

(e.g. the increase of the age of the agent), and iv) changes that are defined by settings outside

the system, e.g. policies. The only Household Profile variables that undergo no changes are

village code and distance to main river. All variables that are among the sets of Hland, Hincome

and Hirr belong to the second category and are thus subjected to the internal changes within

the system. However, changes of variables within the third and fourth category have to be

modeled explicitly, since they are not a result of human-environmental interactions. This task

will be accomplished by the procedures of the Internal Rules:

Variables of the third category that undergo natural changes include Hage, Hwives, Hcattle,

Hlivestock, Hlabor, and Hdepend.

The rule for the changes in age is simple. The age of the household head Hagewill increase

by 1 after each time step, until the upper bound maxageis reached. The rule is as follows:

t+1Hage=

{
tHage+ 1 iftHage< maxage

die iftHage= maxage
(3.1)

All other variables of this third category are also event-driven phenomena, but they

are affected by many causes that are beyond the scope of our study. Itis, therefore, reasonable

to proximate stochastically the values of these household attributes within uncertainty ranges

of the values of the previous time step. For all these variables, the kind of rule follows the

same pattern. We will exemplify this pattern by the example of Hcattle:

t+1Hcattle= round(tHcattle− σcattle+ random(2 · σcattle)) (3.2)

where t+1Hcattleis the number of cattle at time stept + 1, tHcattle the number of cattle at

time stept, andσcattlethe standard deviation for Hcattlecalculated from empirical household

data sets. The random command determines a random number within [0, 2 · σcattle]. Thus,

t+1Hcattle lies within an uncertainty range of [−σcattle, σcattle] around the value oftHcattle.
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Below we will give the rules for all other variables of the third category, following the same

kind of rule as in the example for cattle. As some of the variables are regarded as integers,

they need a round command to ensure integer outcome values.

t+1Hwives= round(tHwives− σwives+ random(2 · σwives)) (3.3)

t+1Hsize= round(tHsize− σsize+ random(2 · σsize)) (3.4)

t+1Hlabor= round(tHlabor− σlabor+ random(2 · σlabor)) (3.5)

t+1Hdepend= round(tHdepend− σdepend+ random(2 · σdepend)) (3.6)

whereσ is the standard deviation of the single variable derived from the empirical data set.

(The annual variation of the livestock index Hlivestock will be determined by the specific

biophysical sub-model of livestock dynamics.)

Variables of the fourth category comprise exclusively variables that are set externally, i.e.

policy access variables. Variables that are counted among this set comprise distance to dams

Hdist dams, distance to water sources Hdist water, current credit access Hcredit, and number of

credits received so far Hnr credits.

Since new dams can be added to the initial settings of the landscape as a policy, the distance

to dams for households also has to be changed automatically.For this, a routine checks

the distances to the various dams, and finally chooses the minimum. The procedure can be

described as follows:

for all dams : set current-dist-dam (distance from house to dam) if (Hdist dams>

current-dist-dam) [ set Hdist damscurrent-dist-dam ]

The distance to water sources distance to water sources is then defined as the minimum of the

distance to dams and the distance to the main river:

Hdist water=min(Hdist dams, Hdist river)

The percentage of households obtaining credit is given outside the model as a policy param-

eter, whereas the amount of credit is fixed, and the period of credit provision is set to 2 years.

This was the observed pattern within the study area, and cannot be changed within the model,
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since possible effects of a different credit pattern cannot be derived from the empirical data

set. Within the model, credits are given randomly within thepopulation of household agents,

whereas those with a lesser number of credits obtained so farare favored. The variable of

Hcreditcan therefore be determined as follows:

tHcredit=

{
1 if tcredit= true
0 if otherwise

(3.7)

wheretcredit denotes whether a household was chosen to access credit in time step t.

Changes in the number of credits that households obtained Hnr creditsare calculated accord-

ingly:

t+1Hnr credits=

{
tHnr credits+ 1 if t+1credit= true
tHnr credits if otherwise

(3.8)

The other two components of the household agent structure, Landscape Vision and Decision

Module, will be described in later chapters. The Landscape Vision, as an integral part of

the multi-level organization of the landscape, will be handled within the description of the

patch-landscape module. The Decision Module will be outlined in a separate section of this

chapter (section 3.4).

Creation and deletion of agents

Agents who reach their maximum age (see equation 3.1), are deleted. If agents within the

same compound id, i.e. living in the same compound, exist, all land belonging to the dead

agent is equally distributed among these. If no such agents exist, a new agent is created within

this compound who inherits the land;

for all patches with (Powner= dead agent), set Powner= new agent

Apart from land, the new agent inherits the values for all variables, that are house-

hold related (e.g. cattle amount, household size, ownership of motor pump), while personal

variables (e.g. number of wives, age, years of irrigation experience) are assigned values from

a random agent with age under 30. Variables concerning the agent’s livelihood strategy (e.g.
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group id) are classed among personal variables and thus obtain their values from the random

agent.

But agents are not only created as successors for deleted agents, but are also cre-

ated in the course of population growth. In each time step, the population of households is

recalculated, based on the logistic growth function:

P(t) =
CP0ert

C + P0(ert − 1)
(3.9)

whereP(t) is the population size at time stept, P0 the initial population size at time 0 (i.e.

the year 2006), andC andr parameters. In each time step,P(t) − P(t − 1)+ D(t), new agents

are created, whereD(t) is the number of agents deleted in time step t without successor.

These agents are allocated randomly to the compounds of the study area, i.e. to patches with

Pcompound= 1. The locations of these patches had been determined prior to the development

of GH-LUDAS (for details see section 3.6). These new agents adopt all their variable values

from another random agent under age of 30. To ensure that all new agents obtain land, these

agents are given priority within the moving phase of land acquisition (see section 3.4.2),

where agents search for new patches. That is, new agents are allowed to search for unused

patches before any other agent. If any of these unused patches are not owned by anybody, the

ownership of these patches is transferred to the new agent. This is the first mechanism that

ensures the ownership of patches. The second mechanism consists of the inheritance system

as defined above. In case an agent (without successor) dies, the land is equally distributed

among the other compound members, including the formerly new agent.

All these mechanisms are geared to observations in the studyarea. The inheritance

system as described here ensures both inheritance with a successor and without, which both

happens. Although in cases of a dissolved household, i.e. cases without a successor, the

available land is not equally distributed among the remaining households, but is usually dis-

tributed according to internal family hierarchies, the approach of equal portions was the most

straightforward method to describe the complicated inheritance structure.
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3.2.2 Structure of the household agent group

The household agent group is a collection of household agents with similar socio-economic

features and is thus assumed to exhibit similar decision-making behavior. The separation

of these groups is based on so-called grouping criteria, which form a subset of the set of

Household Profile variables. After each time step, every agent is assigned to the group with

the most similar values among the grouping criteria. According to the group the agent belongs

to, he is endowed with the group-specific set of behavioral parameters. The identification

process of the range and values of these parameters as well asof the range of grouping

criteria will be outlined in detail in Chapter 4. Following this mindset, the structure of the

household agent group can be formally expressed as follows:

Household Agent Group= {G id, Gcat coeff, Gbehavior}

where Gid is the group identification code, Gcat coeff the categorizer coefficients of grouping

criteria, and Gbehaviorthe set of group-specific behavior parameters.

Categorizer coefficients and Agent Categorizer

The set of grouping criteria is designed to represent the differences among the agent groups,

whereby each group has its own set of categorizer coefficients that serve as weights for these

criteria. These coefficients play a role in the routine that assigns an agent to a certain agent

group, called the Agent Categorizer. The Agent Categorizeris an automatic classification

procedure that categorizes all agents into their nearest groups after each time step. It consists

of an m-logit model, which calculates the distance of each agent to each group, and an as-

signment procedure, which finally assigns the agent to his ’nearest’ group. The distance of

an agentA to groupg Distg is calculated as:

Distg =
eαg+

∑
i βigVi∑

h eαh+
∑

j β jhV j
(3.10)

whereVi are the values of the grouping criteria of agentA, αg a constant, and theβig the

categorizer coefficients for groupg (The range of grouping criteria as well as the values

of the categorizer coefficients as a result of the m-logit model are presented in Chapter 4).
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According to the calculated distances, agentA is then assigned to the group with minimum

Distg:

Hgroup= g with(Distg = minh{Disth}) (3.11)

After the agent has been assigned to his nearest group, the agent will adopt the new behavior

template of the group, as oulined in the following section.

Group behavior

The agent group behavior Gbehaviorconsists of a vector of behavior parameters that are iden-

tical for all group members:

Gbehavior= {[Labdg], σdg, [Labrg], σrg, [βig], σig, [%dryjg], σ jg} (3.12)

where [Labdg] and [Labrg] are the vectors of labor allocation percentages in the dry and

rainy season respectively, [βig] a vector of preference coefficients used for the m-logit model

of land-use choice for the rainy season, and [%dryjg] a vector of percentages of dry-season

land-use types of the cultivated area in the dry season;σi is the respective standard error for

each vector.

The labor allocation vectors consist of the labor allocation percentages, which rep-

resent the percentage of the total labor pool allocated to a single activity by a household.

The range of activities is the same for both seasons, and comprises cultivation, trading, food

processing, handicrafts, migration and other income-generating activities (e.g. white collar

jobs). During focused interviews with local farmers and field observations, these six activities

have been identified to be the main income-generating activities among the local population.

Whereas the choice among rainy-season land-use types is modeled by an m-logit

regression withβig being the respective preference coefficients (see section 2.4.2), a m-logit

model was not used for predicting the choices among dry-season land-use types. Instead,

simple group-specific percentages of land-use types were used, since the available data set

about dry-season farming was not large enough to set up an m-logit model for dry-season

land-use choice. Moreover, differences in cropping patterns among the two land-use types
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within this season were so small that explanatory variablescould not adequately reflect these

differences. Therefore, group-wise percentages of the land-use types of the cultivated area

were used, which turned out to be a more robust approach. The identification of the decision

variables as well as the calculation of the preference coefficients will be outlined in Chapter 4

for both seasons.

All group behavior parameters were determined by statistical analysis of group-wise

empirical data sets, being the same for all group members. However, within the model, the

behavior parameters for a single agent are generated by random values around the fixed pa-

rameters of the group, bounded by the related standard errorσg. For instance, the preference

coefficient for land-use typei for the rainy season will be a random value within the range

(βig − σig, βig + σig). Such slight deviations of the average group behavior together with in-

dividual Household Profile variables ensure a heterogeneous decision behavior even among

agent group members.

3.2.3 Population

The population class is the collection of all household agents, together with a database of

statistical parameters about the population. In land-use and land-cover change research, not

only the changes in land use or cover, but also the related changes in the socio-economic

structure of the population need to be monitored. This will be covered by various statistical

parameters about income patterns during the simulation runs. The class of population can

therefore be formally expressed as:

Population= {{Agents}, Stat}

where Stat consists of the following population performance indicators: i) overall average

income per household, ii) overall average annual income percapita, and iii) the Gini Index of

household income distribution. The Gini Index is a statistical measure to describe the degree

of disparity within a pre-defined population, and is most often applied to measure the equity

of income distribution (Gakidou et al., 2000). The values ofthis coefficient lie within the

range of 0 and 1, and the higher the value, the higher the inequality. Mathematically, the Gini

Index is the standardized area between the Lorenz Curves of auniformly distributed popula-

tion and the observed population (Dorfman, 1979). The Lorenz Curve of income is a graph
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that for the bottom x % of households shows what percentage y %of the total income they

have. The percentage of households is plotted on the x-axis,the percentage of income on the

y-axis. If the curve is a diagonal line, the population is in astate of total equity (see Figure

3.3). An unequal distribution will result in a curve below the diagonal. The Gini Index is then

calculated as the ratio of the area between the two curves andthe area below the diagonal.

3.3 System of the environment: the Landscape Module

The Landscape Module represents the state and processes of the environmental part of the

coupled human-enviroment system of land-use/cover change. Just as the Human Module is

represented in the form of a three-fold hierarchy, this module is also conceptualized as an or-

ganization of three levels: the landscape agent or patch, the Landscape Vision, and the entire

landscape (see Figure 3.4). The landscape agents are represented by congruent land patches

of size 30 m x 30 m, consisting of two main components: the patch’s state variables and the

internal ecological sub-models. The state variables comprise both biophysical/environmental

attributes (e.g. soil texture, distances), which are independent of human actions, and vari-

ables which are related to the human part such as land tenure and use. The internal ecological

sub-models consist of i) productivity functions for all land-use types of both seasons, ii) a

land-cover transformation model, which regulates the conversion of one land-cover type to

the other, and iii) a livestock dynamics sub-model.

As already outlined in the previous section, the Landscape Vision is the environ-

ment of a household agent in which he sets actions. Each household agent has his own

Landscape Vision, which, in multi-agent-based terms, consists of a set of landscape agents

located around the compound patch of the household agent. Within this environment, the

household agent has (limited) insight into its features andattributes, makes land-use deci-

sions and creates impacts on this environment. These impacts are accumulated over time and

aggregately result in spatio-temporal dynamics of the overall landscape (Le, 2005).

The entire landscape is the collection of all landscape agents or patches, being the

emergent result of both the changes and interactions of the single landscape agents. Due to

these interactions, which can be either direct or indirect,i.e. mediated through household

agents, the change of the entire landscape is not only the sumof the single changes of the

patches, but must be rather regarded as an emergent phenomenon created by the interactive
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Figure 3.3: Lorenz curve and Gini index

collective of landscape and household agents.

3.3.1 Structure of the landscape agent

The structure of the landscape agent can be formally expressed as:

Landscape Agent= {Patch Profile, Eco-Sub-models}

where the Patch Profile is the state of the landscape agent, including both human-related

and biophysical variables, and Eco-Sub-models is the collection of all ecological sub-models

including the productivity functions and the land-cover transformation model. A detailed

specification of these components is given below.

Patch Profile

The set of state variables of a patch consists of six components: biophysical variables (Pbiophys),

environmental variables (Penv), tenure properties (Ptenure), the land-use/cover status (Pstatus),

yield (Pyield), and irrigation-related parameters (Pirr):

Patch Profile= {Pbiophys, Penv, Ptenure, Pstatus, Pyield, Pirr}

Biophysical conditions comprise the following variables:
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Figure 3.4: Integration of the Landscape Module in GH-LUDAS

Pbiophys= {Psoil fertility, Psoil texture, Pgwl, Pgwr, Pwetness, Pupslope}

where Psoil fertility and Psoil textureare soil type and soil texture respectively, Pgwl and Pgwr

are average groundwater depth and groundwater recharge, respectively, during the dry sea-

son. Pwetnessis the topographic wetness index, and Pupslopeis the upslope contributing area.

The environmental variables exclusively comprise distances to environmental features:

Penv= {Pdist river, Pdist dams, Pdist water, Pdist border}

with Pdist river being distance of the patch to the main river, Pdist damsdistance to dams, and

Pdist waterdistance to water sources, i.e. main river and dams. Thus, this variable is just the

minimum of the two previous ones, similar to the calculationof the equivalent variable for

household agents. Pdist borderis the distance to the national border to Burkina Faso in the

north.

The tenure properties of the patch can be summarized as follows:

Ptenure= {Powner, Pdry-user, Prainy-user, Pdist user}

where Powner indicates the household agent who owns the patch. But since the user of the

patch does not necessarily need to be the owner, we also included the variables of Pdry-user,
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Figure 3.5: Patch Profile

indicating the agent who uses the patch in the dry season, andPrainy-user, the agent who uses

it in the rainy season. If the patch is not used or owned by anybody, the variables will get

the value ’nobody’. Pdist userdenotes the distance of the patch to its rainy-season user (this

variable is only needed for the rainy season).

The land-use/cover status of a patch Pstatuscomprises the following variables:

Pstatus= {Pcover dry, Pcover rainy, Pland use dry, Pland use rainy, Pcompound}

with Pcover dry and Pcover rainy indicating the land-cover type in the dry and rainy season,

respectively, Pland use drythe land-use type in the dry season, and Pland use rainythe land-use
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type in the rainy season. If a patch is not used during a specific season, the value of the

land-use type is set to 0 for that season. Pcompoundis a dummy variable, indicating whether a

compound house is present on the patch.

The yield status of the patch simply reports the amount of yield in the local currency (Ghana-

ian Cedis) from the dry and the rainy season:

Pyield = {Pyield dry, Pyield rainy}

The category irrigation includes the following two variables: Pirrigable, being a dummy vari-

able indicating if a patch is irrigable, and Pirr coeff, which is called the irrigation coefficient,

with values between 0 and 1 indicating the irrigation potential of a patch. The calculation

of this coefficient, the irrigability, as well as a detailed explanation of the other biophysical

variables will be given in Chapter 5.

Ecological sub-models

As mentioned in the introduction, there are three kinds of ecological sub-models to be built

into the model of the landscape agent: productivity functions for each land-use type, a live-

stock dynamics model, and a land-cover transformation model. For further details, see Chap-

ter 5.

i) Agricultural productivity functions

The agricultural productivity functions are patch sub-models calculating the variables Pyield dry

and Pyield rainy in response to variables of the Patch Profile and the user’s land-use decisions.

Since the importance of biophysical attributes and the kindof land management differ be-

tween the two seasons with respect to crop productivity, a yield model for each season was

developed. Although the range of variables differ between the two seasons, the general form

of the function is the same (see section 5.3.3).

ii) Livestock dynamics model

The livestock dynamics model is a sub-model to calculate thevariable of Hlivestock in re-

sponse to random annual variations and forage availability, the latter being dependent on

both rainfall data and land-use behavior. The livestock index of a household is basically
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modeled as being dependent on the livestock index of the previous year (with a random er-

ror), reflecting changes in the stock due to sale, death, diseases, etc. The forage availability

on the other hand restricts the total number of livestock within the study area, thus reducing

the total number of livestock equally for all households, ifthe carrying capacity with respect

to forage availability is reached (see section 5.3.4).

iii) Land-cover transformation model

The land-cover transformation model is a model to simulate the conversion of one land-

cover type to another, whereby two variables describe land-cover distributions, one for the

rainy season, Pcover rainy, and one for the dry season, Pcover dry. For the establishment of the

model, changes of both variables should thus be analyzed andmodeled if necessary. The

range of land-cover types for both seasons comprises ’rock’, ’water’, ’bare land’, ’grassland’

and ’cropland’. Changes among these land-cover types are driven by both anthropogenic

influence (land-use change) and natural processes independent of human interference (e.g.

grass growth), which both need to be considered in the analysis. In section 5.3.5, the full

land-cover change analysis and the parameterization of thesubsequent land-cover transfor-

mation model will be presented.

3.3.2 Entire landscape

The entire landscape is the collection of all landscape agents, together with a database of

statistical spatial parameters:

Entire landscape= {{Landscape Agents}, Spatial-Stat}

The spatial statistical database Spatial-Stat comprises descriptive statistics about

land-cover and land-use evolving over time. Percentages ofthe different land-use types of

the total cultivated area are computed for both seasons, as well as the simulated land-cover

fractions of the total area under study. The temporal dynamics of these parameters can be

observed via graphs on the simulation interface of the GH-LUDAS model.
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3.4 Structure of the Decision Module

The Decision Module is an ordered collection of procedures regulating the agent’s behavior

regarding his livelihood strategy and land-use decisions.Although this module is introduced

here as an autonomous part of the model, it is in fact an integral part of the household agent,

governing the behavior of that agent. It works as a scheduledprogramme of procedures

reacting to parameters from the household agent and his Landscape Vision, resulting in agent-

specific reactions and actions on the environment.

As the kinds of decisions to be made differ among the two seasons in the study area,

the Decision Module was designed to consider these differences. Thus, it was divided into

two subsequent collections of routines, one for each season, starting with those for the dry

season. The general scheme of the two main routines is similar, starting with the labor allo-

cation among the various income-generating activities, followed by the cultivation of its own

patches. If labor and cash are still available after the fullutilization of its own patches, the

agent will search for new patches, and finally, the income from cultivation (through produc-

tivity functions) and other income-generating activitieswill be calculated. As cultivation in

the dry season is only possible via irrigation, two additional decision sub-models precede the

dry-season procedures, including the decision to irrigate, and the choice of irrigation technol-

ogy.

3.4.1 Dry-season procedures

The dry-season procedures (Dproc) can be structurally expressed in the form of the following

consecutive routines:

Dproc= [D irr, Dmethod, Dlabor, Dstatic, Dmoving, Dincome]

where Dirr is the decision for irrigation farming, Dmethodthe choice of irrigation technology,

Dlabor the labor allocation procedure, Dstatic the static phase of cultivating own patches, and

Dmovingthe moving phase for opening new patches, and Dincomethe income-generating pro-

cedure for the dry season.
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Irrigation choices (Dirr ) and (Dmethod)

The procedures of irrigation decision and method choice areexamined here in combination,

since they form a nested hierarchy of decisions with respectto irrigation-related decisions.

For modeling this decision procedure, we decided to use a two-fold nested m-logit model.

The first sequences of the m-logit model will simulate the general decision of a household

agent to engage in irrigation farming, and the second will then simulate the choice of irriga-

tion technology, if the decision on irrigation in the first step is positive. This two-fold nested

decision is taken by each household agent in each time step atthe beginning of the model

run, and is independent of the group of agents.

For the first sequence of the nested m-logit model, we employed household-specific

data reflecting the economic capability of a household to afford irrigation farming, including

financial capital, human resources, land and knowledge. Thesecond sequence then regulates

the choice of irrigation technology, which is a choice amongthree alternatives: dam irrigation

(in case a dam is located within the Landscape Vision) and tworiverine irrigation methods,

i.e. the use of hand dug wells via buckets, or dugouts via motor pumps. The choice of these

three options is based on the following indicators: i) the financial capacity of a household,

since the three options require varying monetary investments, ii) the availability of a dam

within an acceptable distance, and iii) the personal history of the considered household agent

regarding irrigation method and practice. The range of variables used for both levels of this

nested decision m-logit model will be outlined and justifiedin detail in Chapter 4, together

with a presentation of the calculated m-logit coefficients.

Labor allocation procedure (Dlabor)

Within this labor allocation procedure, the total dry-season labor pool of the household is

allocated to the various production lines, including cultivation, trading, food processing,

handicrafts, migration and other income-generating activities (e.g white collar jobs). The

percentages of labor allocated to these various productionlines are defined by the household

agent group, reflecting the production strategy of the livelihood or agent group the household

belongs to.

But since the amount of labor allocated to cultivation rather depends on the deci-

sions of the household regarding irrigation than on the agent group, the amount of labor is
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defined by the irrigation choices: If no irrigation is practiced during the dry season, no labor is

allocated to the cultivation production line. If, on the other hand, the decision to do irrigation

farming is positive, a certain amount of labor is allocated to this production line, depending

on the choice of irrigation method. The reason for this differentiation is that in the study

area the labor input requirements vary highly among the irrigation methods, with bucket ir-

rigation being twice as labor-intensive as pump irrigation. After the amount of cultivation

labor has been set, the spare labor pool is allocated to the five remaining production lines,

as pre-defined by the agent group. The total labor pool for thedry season is the number of

labor days per household spent on income-generating activities (i.e. the six production lines).

For the base year 2006, which is the starting point of the model, this labor pool was calcu-

lated from field data for each household, i.e. the dry-season-based survey (see Appendices

B for questionnaire). For each subsequent year, the labor pool in the model is recalculated

dependent on the value of the preceding year:

t+1Hpool dry= tHpool dry− σpool dry+ random(2 · σpool dry) (3.13)

whereσpool dry is the standard deviation of Hpool dry. The labor pool represents the labor

allocated to income-generating activities and is allowed to lie beneath the labor capacity of

the household. Using this approach, underemployment in terms of an incomplete use of labor

capacity of the household, is considered, as is the case for many households in the study area.

Static phase (Dstatic)

Since it is natural to first cultivate own patches and then look for other patches, this procedure

precedes the routine of borrowing new patches. Since patches considered for cultivation

during the dry season need to be irrigable, these patches have to be located either within an

irrigable dam area, or within the irrigable area along the main river. The determination of

this riverine irrigable area will be given in Chapter 5. Thisway, a household agent either

owns no irrigable patches, patches along the river, patchesalong a dam, or both of the latter

two. Interviews with local farmers suggest that if households own both dam and riverine

patches, the dam patches will be preferred, as they are less labor intensive and more cost

effective. Therefore, the virtual household agent is programmed to put dam patches under
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cultivation, before shifting to riverine land holdings, regardless of the irrigation choice made

within the irrigation decision procedures. These decisions are considered to only play a role

in the moving phase of the agent when searching for new land patches. In the following, we

will denote the set of owned patches along a dam as Harea-dam, and the set of owned irrigable

and riverine patches as Harea-river.

Before we present the algorithm of the Dstaticprocedure, we have to introduce the

concept of how to determine the size of the area a single household is able to cultivate.

The size is dependent on two factors: the financial resourcesof the household, as irrigated

cultivation is associated with relatively high costs for fertilizer purchase and maintenance of

the irrigation system, and labor resources. Since the requirements of labor and input capital

vary highly among the three irrigation types, the possible number of patches to be cultivated is

calculated for each irrigation type separately, dependingon the available financial and labor

resources of the household. This calculation is based on a linear regression for each type,

with explanatory variables of cultivation labor pool and income:

iCmax= ia+ ib1 · Hlabor-pool dry+ ib2 · Hincome (3.14)

whereiCmaxis the maximum number of patches to be cultivated by a household, with i index-

ing the type of irrigation method. This parameteriCmax calculated by this linear regression

model then serves as the upper limit for the model of cultivation.

Thus, the number of owned irrigable patches and the number ofmaximum possible

cultivated patchesiCmax serve as upper bounds for the number of cultivated patches within

the procedure of Dstatic. However, regarding the cultivation along dams, another limiting

factor plays a role, which is represented by the policy of area limitation:

In GH-LUDAS, the maximum dam area a single household agent isallowed to cul-

tivate (called LimDam) can be specified outside the model as a policy parameter. Thus, this

parameter serves as another limiting factor for the number of cultivated patches if these are

located along a dam. Following this mindset, the cultivation of own land holdings or the static

phase can be structured as follows:

1. Set Used-Patches 0
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2. Set the irrigation method i to dam.

3. Calculate the number n of owned patches actually cultivated by the household:

n= min(count(Harea-dam), iCmax, LimDam)

4. Select n random patches from the set Harea-dam

5. For each of these n patches choose its land-use type

6. Set the input parameters of labor and fertilizer, dependent on the type of land-use

7. Set the irrigation method i to the riverine method with thehighest probability

8. Set Used-Patches Used-Patches+ n

9. Calculate the number n of owned patches actually cultivated by the household:

n= min(count(Harea-river), iCmax - Used-Patches)

10. Select n random patches from the set Harea-river

11. For each of these n patches choose its land-use type

12. Set the input parameters of labor and fertilizer, dependent on the type of land-use

13. Set Used-Patches Used-Patches+ n

Moving phase (Dmoving)

The moving phase is similar to the static phase as depicted above, apart from the fact that

the choice of irrigation method and the Landscape Vision play a role in this procedure. As

the Landscape Vision is the environment a household agent can act upon, the agent will only

search for irrigable patches within his individual Landscape Vision. In the following, we

will denote the set of irrigable dam patches within the Landscape Vision not used by another

agent as LVdam, and the set of irrigable riverine patches within the Landscape Vision not

used by another agent as LVriver. Regarding the choice of irrigation method, it is a natural

assumption that a household agent can change his choice of irrigation method during his

search for irrigable patches. For instance, if the agent chooses a riverine irrigation method,

but patches along the river are no longer available, he will shift to a dam if one is located

within his Landscape Vision. It can also be the other way round, i.e. an agent first chooses

dam irrigation, but then has to shift to riverine irrigationif no dam patches are located within

his Landscape Vision. Thus, two different procedures are presented here, dependent on the

first choice of irrigation technology. These two proceduresof Dmoving are similar to the

mindset of the procedure Dstaticand can be summarized as follows:
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If (H irr method= dam) run the following procedure:

1. Set the irrigation method i to dam.

2. Calculate the maximum number n of patches actually cultivated by the household:

n= min(count(LVdam), iCmax - Used-Patches, LimDam)

3. Select n random patches from the set LVdam

4. For each of these n patches choose its land-use type

5. Set the input parameters of labor and fertilizer, dependent on the type of land use

6. Set Used-Patches Used-Patches+ n

7. Set the irrigation method i to the riverine method with thehighest probability

8. Calculate the maximum number n of patches actually cultivated by the household:

n= min(count(LVriver, iCmax - Used-Patches)

9. Select n random patches from the set LVriver

10. For each of these n patches choose its land-use type

11. Set the input parameters of labor and fertilizer, dependent on the type of land use

12. Set Used-Patches Used-Patches+ n

And If (Hirr method= well or motor pump) run the following procedure:

1. Set the irrigation method i to the riverine method with thehighest utility

2. Calculate the maximum number n of patches actually cultivated by the household:

n= min(count(LVriver), iCmax - Used-Patches)

3. Select n random patches from the set LVriver

4. For each of these n patches choose its land-use type

5. Set the input parameters of labor and fertilizer, dependent on the type of land use

6. Set Used-Patches Used-Patches+ n

7. Set the irrigation method i to dam.

8. Calculate the maximum number n of patches actually cultivated by the household:

n= min(count(LVdam), iCmax - Used-Patches, LimDam)

9. Select n random patches from the set LVdam

10. For each of these n patches choose its land-use type
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11. Set the input parameters of labor and fertilizer, dependent on the type of land use

12. Set Used-Patches Used-Patches+ n

Income generation procedure (Dincome)

Since cash income plays an important role within the coupledhuman-environment system,

as it serves as the financial basis for land-use related investments, the income generation

procedure is designed as a routine to calculate both cash andgross income. However, it

is assumed that cash and gross income for the non-farm activities are identical, including

the activities of trading, food processing, handicrafts, migration and other activities, since a

differentiation among cash and gross income for these activities is a difficult issue and reliable

information was not available during the surveys.

The same is valid for the generation of gross income for livestock, as it was not

possible to measure the net annual gross income of an animal stock. But as the sale of

livestock was captured during the household surveys, at least the annual cash income of this

production line could be measured. The seasonal cash incomefrom livestock Hinc live drywas

calculated using linear regression based on the amount of livestock, i.e. livestock index:

Hinc live dry= alivedry + blivedry · Hlivestock (3.15)

wherealivedry andblivedry are parameters calculated using the statistical analysis programme

SPSS.

Using a similar approach, the income of the non-farm activities is generated based

on the amount of labor allocated to the various production lines:

Hinc trad dry= atraddry+ btraddry · Hlab trad dry (3.16)

Hinc food dry= af ooddry+ bf ooddry · Hlab food dry (3.17)

Hinc arts dry= aartsdry+ bartsdry · Hlab arts dry (3.18)

Hinc migr dry= amigrdry+ bmigrdry · Hlab migr dry (3.19)

Hinc others dry= aothersdry+ bothersdry· Hlab others dry (3.20)
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The gross income generated by the production line of cultivation (Hgross inc cult dry) is simply

calculated as the sum of yield of all cultivated patches:

Hgross inc cult dry=
∑

all cultivated patches

Pyield dry (3.21)

whereas the calculation of cash income from this productionline follows a different approach:

Since crops cultivated in the dry season mainly serve as cashcrops and are sold out to traders

or at markets, the cash income of dry-season cultivation is modeled as a linear regression

function based on the gross income of cultivation as presented above:

Hcash inc cult dry= acultdry + bcultdry · Hgross inc cult dry (3.22)

whereacultdry andbcultdry are the parameters of this regression.

As the policy of credit access plays a role in the study area inthe generation of

additional income, it must be a factor for this income model:Additional financial resources

allow a household to generate more income per labor unit, which has to be considered in this

routine. This additional income per labor unit for each production line was derived from the

empirical household data set, including both households that had had access to credit and

households that had not. This additional income was then added to the incomes for each

production line of a household once the household had accessto credit: This procedure can

be depicted as follows:

credit(1)Hinc i dry = no credit(1)Hinc i dry+ ai · Hlab i dry (3.23)

where i indexes the production line,credit(1)Hinc i dry is the income generated by the access to

(the first) credit,no credit(1)Hinc i dry the income generated without credit, andai is the line-

specific factor of additional income per labor unit.

The empirical data set did not provide any information aboutthe income structures

of households that had access to credit more than once. However, it is a natural assumption

that the additional income generated by an additional credit declines with the number of

credits already obtained, i.e. the effect of each additional credit wears off. This decline in
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the effect of additional credits is regulated by the global-policyparameter called the credit

deflating factor, which has values between 0 and 1. In the caseof the value 0.5 for this

factor, the effect of credit on income is only 50 % as strong as the effect of the previous credit

on income. Thus, the income converges against a certain limit, with the number of credits

obtained Hnr creditsincreasing. Mathematically, this relationship can be expressed as:

 credit(n)Hinc i dry
no credit(n)Hinc i dry

− 1

 ·Creditdef=

 credit(n+1)Hinc i dry
no credit(n+1)Hinc i dry

− 1

 (3.24)

wherei indexes the production line,n denotes the number of credits already obtained, and

Creditdef the credit deflating factor. This equation can be transformed such that the income

for then+ 1th credit can be calculated:

credit(n+1)Hinc i dry =

=

 credit(n)Hinc i dry
no credit(n)Hinc i dry

− 1

 ·Creditdef+ 1

 · no credit(n+1)Hinc i dry

(3.25)

3.4.2 Rainy-season procedures

Similar to the dry-season procedures, the rainy-season procedures (called Rproc) can be struc-

turally expressed in the form of the following consecutive routines:

Rproc= [Rlabor, Rstatic, Rmoving, Rincome]

where Rlaboris the labor allocation procedure, Rstaticand Rmovingthe static and moving phase

of cultivation, and Rincomethe income generating procedure for the rainy season.

Labor allocation procedure (Rlabor)

In this procedure, the labor pool for the rainy season is allocated to the different production

lines, which comprise the same range of activities as in the dry season. As for the dry season,

the percentages of labor allocated to the various activities are defined by the agent group,

which reflects the livelihood strategy of the household in question, whereby the total annual

labor pool Hpool rainyis calculated accordingly. Analogous to the dry season, theprovision of
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credit leads to a small shift of labor allocation by a factor that has been derived statistically

from the empirical data set. This procedure is equivalent tothe dry-season equation, but with

rainy-season specific parameters, which were identified using SPSS.

Static phase (Rstatic)

Compared to the dry season, financial resources play a lesserrole for cultivation during the

rainy season. Therefore, the maximum area Cmax a household is capable of cultivating is

modeled as only being dependent on the available labor pool for cultivation. This way, Cmax

can be formulated as follows:

Cmax= Hlabor cult rainy/ Ilab mean

where Hlabor cult rainyis the available labor for cultivation, and Ilab meanis the empirical mean

of labor input for a single patch. Since only patches with theland cover ’cropland’ or ’grass-

land’ are suitable for cultivation, patches that are covered by bare land or forest have to be

ignored during the routine of Rstatic. Thus, we will denote the set of patches owned by a

household covered by either grassland or cropland as Harea. Furthermore, it was observed

that a farmer usually prefers to continue cultivating the patches that have been used the year

before. The reason for this is that he usually reserves grassland holdings for the feeding of

his livestock. Therefore, within this routine, first all patches with the land cover ’cropland’

will be selected until all patches have been cultivated. Then the procedure will start selecting

grass patches. The procedure Rstaticcan be summarized as follows:

1. Set Used-Patches 0

2. Calculate the number n of owned patches actually cultivated by the household:

n= min(count(Harea), Cmax)

3. Select n random patches from the set Harea

4. For each of these n patches (with preference of patches covered by cropland) choose

its land-use type

5. Set the parameters of labor input and management, dependent on the type of land-use

6. Set Used-Patches Used-Patches+ n
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Moving phase (Rmoving)

In the moving phase, the household agent searches for new patches within his Landscape

Vision, if labor is still available. According to field observations, a farmer usually tries to

continue to cultivate plots he already asked for during the last season. Therefore, the moving

phase can be separated into two sub-routines: In the first, the household agent will try to

continue cultivating the patches he has already acquired; in the second, he will scan his

Landscape Vision for new patches, and if he is successful, mark them as being borrowed.

These two procedures can be summarized in the following; LVareadenotes the set of still

unused patches within the Landscape Vision suitable for cultivation (i.e. either grassland or

cropland) and Hborr the set of patches borrowed by the household and not yet used by any

other household:

1. Calculate the number n of patches actually cultivated by the household:

n= min(count(Hborr), Cmax - Used-Patches)

2. Select n random patches from the set Hborr

3. For each of these n patches choose its land-use type

4. Set the parameters of labor input and management, dependent on the type of land use

5. Set Used-Patches Used-Patches+ n

6. Calculate the number n of patches actually cultivated by the household:

n= min(count(LVarea), Cmax - Used-Patches)

7. Select n random patches from the set Harea

8. For each of these n patches (with preference of patches covered by cropland) choose

its land-use type

9. Set the parameters of labor input and management, dependent on the type of land-use

10. Set Used-Patches Used-Patches+ n

Income generation procedure (Rincome)

Analogous to the dry-season procedure, both cash and gross incomes are calculated. The

equivalent equations are as follows:

Hinc live rainy= aliverainy + bliverainy · Hlivestock (3.26)
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for cash income of livestock, and

Hinc i rainy= airainy + birainy · Hlab i rainy (3.27)

with i indexing the production lines as in the dry-season procedure, andairainy andbirainy being

the respective parameters. Equivalently, the gross incomefrom cultivation Hgross inc cult rainy

is calculated as:

Hgross inc cult rainy=
∑

all cultivated patches

Pyield-rainy (3.28)

with Pyield rainy being the yield of a single patch, as calculated by the land-use-specific pro-

ductivity functions.

Regarding the calculation of cash income from cultivation,a different approach is

needed, because the pattern of crop sale is distinct from thedry season. Most of the harvest

is not sold, but stored and mainly used for consumption during the months after harvest.

Nevertheless, some of the crops such as rice and groundnuts can be considered as cash crops

to a limited extent. This way, the amount of sold harvest is not dependent on the total gross

income of cultivation as in the dry season, but merely on the type and amount of cultivated

crops. Thus, the function of cash income for this season was designed as follows:

Hcash inc cult rainy= a+
∑

i

bi · Cult-Areai (3.29)

where Cult-Areai is the total cultivated area of the land-use type i of the household. This

way, the amount of cash income reflects the pattern of the choice of cash land-use types and

non-cash land-use types. For the rainy season, the impact ofthe first credit on the different

income-generating activities is modeled in the same way as for the dry season, but with the

corresponding parameters:

credit(1)Hinc i rainy= no credit(1)Hinc i rainy+ ·ai · Hlab i rainy (3.30)
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wherei indexes the type of production line, and ai is the additionalincome per labor unit

generated by the first credit. The income generated by further credits is then calculated using

the same algorithm as in the dry season.

3.5 Global-policy Module

This module represents policy parameters in the form of tunable parameters that the model

user can set according to scenarios he wants to explore. Within the model, these parameters

are accessible by both landscape and household agents, and are therefore also called global

parameters. The policy and other external factors includedin GH-LUDAS to be tested for

their impacts comprise

1. Dam construction to improve possibilities for dry-season irrigation

2. Credit access regulations to test the effects of credit schemes on the combined liveli-

hood and land-use/cover pattern

3. Population dynamics and IPCC rainfall scenarios.

A justification of the choice of these policies will be given in Chapter 6, together

with a detailed description of the policy situation in the study area. In this section, we will

only provide an overview of the parameterization of these policies and their relations with the

other model components.

3.5.1 Dam construction policy

In case an institution is interested in providing an area with one or more dams, several con-

siderations have to be made. First, the biophysical conditions of the area have to be examined

to decide where and whether these conditions allow the construction of a dam. In addition,

the location of the dam should be selected according to the socio-economic conditions of its

potential users. Otherwise, the dam will possibly not be utilized fully to its capacity if its

potential users do not have the ability or resources to do irrigation farming. Therefore, the
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selection of the location of the dam, which should be directed towards a maximum benefit for

all its users, is a critical issue.

Second, the size of irrigation capacity and number of dams tobe constructed have to

be carefully determined. As in some situations the construction of a single large dam could

match the socio-economic needs of the population, in other cases a collection of several

scattered small-scale dams is required. Thus, it is necessary to evaluate scenarios of different

combinations of size and number of dams.

Third, to provide a maximum of potential users with the possibility to engage in

irrigation farming, a regulation of area limitation could be taken into consideration, i.e. the

prescribed maximum area one household is allowed to cultivate along a dam. The selection

of this parameter is also a critical issue, as it should ensure a maximal number of dam users

on the one hand, but also a full utilization of the irrigationcapacity on the other. Accord-

ing to these considerations, in GH-LUDAS, the following parameters of the policy of dam

construction Policydamhave been included:

Policydam= {Damlim, Damnumber, [Damloc, Damsize]}

where Damlim denotes the size of maximum cultivated area, Damnumberthe number of dams,

and Damloc and Damsizethe location and size for each of the single dams.

In GH-LUDAS, the single dams can be inserted into the landscape on the user in-

terface via a mouse click, and a slider allows the user to define the size of the dam. Another

slider defining the maximum cultivated area can be set according to the scenarios to be ex-

plored.

In the model, these parameters are linked to the landscape aswell as to the Human

Module (Figure 3.6). On the household side, the locations ofthe dams (Damloc) regulates

the distance to dams and water sources, while Damlim defines the upper limit for dam cul-

tivation for the household (section 3.4). On the landscape side, the size and location of the

dam modify the parameter Pirrigableof some of the landscape patches: The parameter Pirrigable

of those patches that are located within the irrigable perimeter around the dam will be set to 1.
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Figure 3.6: Integration of the dam construction policy in GH-LUDAS

3.5.2 Credit access policy

Access to credit directly affects land-use-related household decisions, thus possiblyexerting

an influence on the local land-use and land-cover patterns. It was observed during field inter-

views as well as by statistical analysis of the empirical data set, that farmers with access to

credit schemes change their focus regarding their activities. They may intensify some of their

income-generating activities with higher income generation possibilities (e.g. trading, irriga-

tion), while some of the less productive activities (e.g. food processing) might be reduced.

The additional income generated by these investments of labor and cash stimulated by the

credit may be reinvested in land-use-related and other activities, thus gradually changing the

livelihood strategy and decision-making processes.

In the study area, the credit scheme managed by the Ministry of Food and Agricul-

ture (MOFA) allows a credit of 200 000 Cedis (about 20 US $) perhousehold. Since this

credit amount obtained by local farmers is constant, the possible effects of a different credit

rate cannot be assessed from the empirical data set. Thus, inGH-LUDAS, the credit rate

must presently be regarded as constant at 20 Cedis. The same is valid for the period of credit

access, i.e. the number of successive years a household obtains this amount from the credit

scheme, which was observed to be constant at 2 years.
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Nevertheless, the annual rate of households supplied with credit can be modified as a pa-

rameter within the model. Apart from that, the credit schemecan be manually switched to a

different kind of scheme than the one observed in the study area, called the ’revolving credit’

scheme. The idea of this kind of scheme is that, once the credit has been distributed among

the population, it will be handed round until a certain period of time has elapsed. In other

words, the credit a household obtains from the scheme at the beginning of this period will

not be paid back to the scheme, but to another household. Thishousehold will then pay back

the credit to a third household, and so on, until a certain period has elapsed. Then, the last

household will pay its debts back to the donor. We will call the period of time the credit

remains within the population as the ’revolving credit period’. The parameters defining the

credit scheme policy Policycredit in GH-LUDAS can therefore be summarized as follows:

Policycredit= {Creditperc, Creditscheme, Creditrev period, Creditdef}

where Creditperc is the annual percentage of households supplied with credit, Creditschemea

dummy variable defining which kind of scheme is activated, Creditrev periodthe parameter of

revolving credit period, which is only called by the model ifthe scheme is of the revolving

type, and Creditdef the credit deflating factor (see section 3.4).

As the effects of credit access on the environment are only of an indirect nature, the

direct linkages of this policy to the other system components are among these policy param-

eters and parameters of the household agents (Figure 3.7), and the parameters of this policy

directly change the household variables Hcredit, Hnr creditsand Hgross income. Changes in any

of the policy parameters result in a change of income, and ultimately show indirect effects on

land-use choice and land productivity.

3.5.3 Population dynamics and climate change

Other external variables of the Global-policy Module, which are not related to policies, in-

clude parameters describing population dynamics and the choice among possible future rain-

fall scenarios. As no reliable population data for the studyarea were available, due to un-

reliable and insufficient population surveys (only 4 surveys in 1965, 1975, 1984and 2000),

no reliable model could be established for projecting future population numbers. Instead, the
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Figure 3.7: Integration of the credit access policy in GH-LUDAS

parameters describing local population dynamics were chosen to be set externally. To repre-

sent these dynamics we chose one of the most widely used models for population growth, the

logistic growth model, which can be expressed as:

P(t) =
CP0ert

C + P0(ert − 1)
(3.31)

whereP(t) is the population size at time stept, P0 the initial population size at time 0, and

the carrying capacityC and the growth rater parameters describing the convergence behavior

of the population. Fort → ∞, the population size converges against the carrying capacity

C with growth rate or ’speed’r. These two parameters are set externally by the model user,

according to the scenarios population growth to be explored(Figure 3.8). New agents are
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created in each time step, dependent on the logistic growth model and the number of agents

that were deleted due to the ageing process incorporated in the model.

Finally, scenarios of future annual rainfall can be selected, based on local climate

data as simulated by the IPCC (International Panel on Climate Change), which is the leading

research group with respect to global climate assessment. The annual data of the rainfall

scenario selected by the model user are fed into the productivity functions for rainy-season

land-use types. Furthermore, a model is developed (see Chapter 5) to calculate the forage

availability for local livestock based on rainfall data in order to determine the annual carrying

capacity for local livestock. This way, in GH-LUDAS, a decrease or increase in crop and

forage productivity due to changing rainfall patterns indirectly influence land-use choice and

livestock dynamics and thus livelihood strategies (Figure3.9). The details of the integration

of rainfall data into crop and forage productivity are givenin Chapter 5.

3.6 Simulation protocol of GH-LUDAS

Within this section, the two main parts of the model will be outlined: The setup procedure

of the model, and the main time-loop of sequential procedures during simulation. The setup

procedure is a routine that simulates the whole landscape with all its household agents and

their attributes before any model run. The goal of this procedure is to simulate as closely as

possible the state of the coupled human-environment systemas it was in 2006, which was the

year of data collection. The time-loop procedures, on the other hand, represent the dynamic

part of the model, consisting of a collection of sequential procedures, which will be run in

each time step representing one year.

3.6.1 Setup procedure

The setup procedure is a routine to implement the state variables of landscape and household

agents, and to visualize the current land-cover patterns inthe view of the model. In this

section, we will first describe the routine of landscape implementation, and subsequently the

setup of household agents within this landscape.
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Figure 3.8: Regulation of agent population in GH-LUDAS

Landscape setup

The setup procedure for the landscape can be structurally described by the following succes-

sive steps:

1. The implementation and visualization of current land-cover patterns in the study area,

based on the analysis of satellite images

2. The assignment of patch-specific variables to all patcheslocated in the study area

3. The allocation of dams to this landscape via mouse click, if the examination of this

policy is desired by the model user.

As this section mainly deals with the implementation of the model, we will only give

a short explanation of how these patch-specific attributes have been derived, and focus on the

way of implementation. The sources and derivation of these attributes will be described in

detail later in Chapter 5.

The land-cover pattern of the year 2006 was derived from two satellite images using

the ERDAS package. The first image with a higher resolution, served as the basis for the

digitization of the main river and its tributaries, while the second provided the basis for the

96



Specification of GH-LUDAS

Global-policy Module

Choice of
Rainfall Scenario

Global-policy Module

BEHAVIOR

STATE

Decision Module

Hgroup

Hgross income

Landscape Module

STATE

BEHAVIOR

Yield Dynamics

Livestock Dynamics

Pland use dry

Pland use rainy

�

�

�

-

-

�

-

Generating income

Land-use actions

Figure 3.9: Integration of rainfall change in GH-LUDAS

classification of all remaining land-cover types. These twoimages were then converted to

ascii files, which store a single value per pixel, representing one patch of the landscape of 30

m x 30 m. These ascii files can then be easily read by NetLogo, whereas each patch of the

view is assigned its specific value of land-cover. Within theview, these different land-cover

types were then visualized by different colors.

While the land-cover patterns are visible within the view, the other patch attributes

are only stored but not visualized. These variables includeinstitutional attributes (Pvillage,

Pcompound), distances (Pdist river, Pdist dams, Pdist water sources), and all biophysical variabes

(Pwetness, Pupslope, Pelevation, Psoil fertility, Psoil texture, Pgwl, Pgwr). The irrigation coefficient

Pirr oeff and the dummy variable Pirrigableare then calculated from this data set (see Chapter

5). All other variables were derived from different sources such as maps, GIS layers created

by previous studies of the study area, and satellite images.In the same manner as the land-

cover data, the data were also converted to ascii files to be read by NetLogo.

The last procedure is only called if the user wishes to implement dams within the

model. Within the view, the dam can be inserted by the user viamouse click, and its irriga-
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tion capacity can be set specifically for each dam. This way, each dam has its own specific

irrigation capacity. Each inserted dam consists of the dam itself and its respective irrigable

area. First, the procedure creates a dam as a circle around the selected patch, while the size

of the circle is defined by the irrigation capacity, and converts the land cover of these patches

to ’water’. Second, the irrigable area is created along the direction of minimal elevation

(Pelevation), with the number of patches pre-defined by the value of irrigation capacity. Fi-

nally, the dummy variable (Pirrigable) is set to 1 for all patches within this irrigable area.

Household agents setup

The setup procedure for household agents can be structurally described by the following suc-

cessive steps:

1. The import of the set of 200 interviewed farmers, togetherwith their specific household

variables

2. The multiplication of these 200 households to populate the landscape to its actual pop-

ulation size

3. The calculation of distance variables for all household and landscape agents

4. The allocation of land holdings for each household agent

In the first step, to ensure a reliable reproduction of the real population, copies of

those households that had been interviewed during the field surveys will be created. These

household agents are endowed with the same set of variables as the interviewed farmers,

and are located within the respective village of the catchment. Within each village, they are

distributed on the compounds as digitized by a high-resolution satellite image, i.e. on patches

with the dummy variable being Pcompound= 1. The range of imported variables comprises all

attributes that are of relevance for the next time step of simulation, including institutional and

social attributes (e.g. Hvillage, Hage, etc.), labor resources (e.g. Hlabor), financial resources

(e.g. Hgross rainy, Hgross dry, etc.), and land resources (e.g. Hholdings).

These variables are imported as text files into NetLogo, eachstoring 200 values,

one for each household. Just like the ascii files, these files can be easily called by NetLogo,
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assigning each value to its respective household agent. After the creation of the set of these

200 agents, the population will be augmented by creating copies of these basic agents until the

actual population size is reached. These new agents are allocated to the same village as their

original, and distributed within the different compounds in the respective village. The actual

population sizes for each of the villages were calculated from statistical data sets provided by

the Ghanaian Survey Department.

In the third step, when all agents have been created, the distances of these agents

to landscape features such as main river and dams are calculated. Furthermore, if dams have

been inserted into the landscape, the distance to dams are updated for all landscape agents.

Finally, since virtual household agents should also own patches as in reality, this

procedure allocates land holdings to each of the agents. Thesizes of these land holdings are

given by the holding variables of the agents, as called by thefirst procedure. The location of

these patches is given by the land-allocation procedure, which works as a loop. In each loop,

each agent is allowed to select one single patch, and the procedure will be run until all agents

are assigned their specific amount of land.

The loop itself runs as follows: As long as patches within theLandscape Vision are

still available (i.e. Powner= ’nobody’), the called agent will mark a random patch within this

vision as his. If no patch within the Landscape Vision is available, the agent will select a

random patch within the same village, and if none of these areavailable, the agent will select

a random patch from the whole catchment. The design of this procedure avoids a biased pat-

tern of distances of owned patches to their respective owners.

3.6.2 Time-loop procedure

The time-loop procedure consists of a collection of sequential routines, which will be run in

each time step (Figure 3.10). The policy parameters apart from the location and size of the

dams, as well as the parameters of population growth, are usually set before simulation, but

can also be modified during the simulation, if this is of interest to the model user. The time-

loop starts with the update of the population, i.e. deletionand creation of household agents,

allocates credit to this updated population, and then starts with the annual production cycle,

beginning with the dry-season procedures and ending with those for the rainy season. Finally,

agent and landscape variables are updated according to the results of these procedures. The
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main steps of this time-loop procedure are outlined in the following:
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Figure 3.10: Time-loop procedure

1. Update of age and deletion of household agents. In this step, the age of the household

agent is updated, and if the maximum age is arrived, the agentis deleted.

2. Creation of new household agents. This procedure createsnew household agents ac-

cording to the new population size, as calculated by the parameters of population

growth, and the number of deleted agents without successor..

3. Allocation of credit. According to the annual credit access rate, agents are selected

randomly to obtain credit, whils those agents are preferredthat had obtained a lesser

number of credits do far.

4. Decision to do irrigation. In this step, each household agent generally decides between

doing irrigation and not doing it. This procedure is dependent on both the household’s
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state and the biophysical attributes of the landscape (see section 3.4.1; procedure Dirr).

5. Choice of irrigation method. If the decision to do irrigation is positive, the agent will

decide here about the irrigation method he is going to use (see section 3.4.1; procedure

Dmethod)

6. Labor allocation for the dry season. In this step, the dry-season labor pool will be

allocated to the various production lines, dependent on thegroup the agent belongs to.

Furthermore, for each credit the agent had obtained, a shiftin the labor allocation is

executed.

7. Static phase of dry-season cultivation. Here, the agent starts cultivating his own irri-

gable patches, by deciding about land-use type and input of fertilizer and labor. The

procedure runs as long as the required labor and cash resources are available.

8. Moving phase of dry-season cultivation. In this step, theagent will start searching for

new patches, but with the same land-use related decisions asin the static phase. The

procedure runs until the combined labor and cash resources are exhausted, or until all

irrigable patches within the Landscape Vision of the agent are under use.

9. Calculation of dry-season yield. This procedure calculates the yield of each irrigated

plot in the local currency, using productivity functions (see section 3.3.1).

10. Calculation of dry-season income. In this step, the cashand gross incomes for each

production line are calculated. Furthermore, the gross income is augmented according

to the credit access of the household and the credit deflatingfactor.

11. Labor allocation for the rainy season. Similar to the dryseason, the rainy-season labor

pool will be allocated to the various production lines, being dependent on both the

agent group and the credit access patterns of the household.

12. Static phase of rainy-season cultivation. Here, the agent starts cultivating his own

patches, by deciding about land-use type, management, and input of labor. The proce-

dure runs as long as the required labor resources are available.

13. Moving phase of rainy-season cultivation. This procedure is similar to the static phase,

apart from the fact that the agent now shifts to new patches, if labor is still available.

Once the agent has borrowed a patch from another agent, he will try to continue using

it in the next time step.
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14. The calculation of rainy-season yield. This procedure calculates the yield of each cul-

tivated plot in the local currency, using productivity functions (see Chapter 5).

15. The calculation of rainy-season income. Equivalent to the rainy season, in this step the

cash and gross incomes for each production line are calculated, also being dependent

on the credit access pattern of the household.

16. Agent Categorizer. After the season-specific procedures have terminated, the agent cat-

egorizer will allocate each agent to its nearest group, while the values of the grouping

criteria for each group are updated according to the mean criteria values of the group

members.

17. Update of household variables. According to the group the agent has been assigned to,

the group-specific household variables will be updated. Furthermore, all other house-

hold variables that are the result of the previous procedures will be updated for the next

time step.

18. Update of landscape variables. This routine, called theland-cover transformation pro-

cedure, will update the land-cover type for those patches that had undergone a land-

cover change during the simulation of the previous procedures.

19. Statistical calculations. Finally, statistical parameters will be generated for both the

landscape and the population. On the population side, mean annual income as well as

the corresponding Gini Index are calculated, and on the landscape side, land-cover and

land-use fractions are calculated for both seasons.
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4 LAND-USE DECISIONS BY HETEROGENEOUS HOUSEHOLD AGENTS

4.1 Introduction

Land-use dynamics, which involve decisions of land users, are major determinants of land-

cover changes. Thus, the critical element in land use is the human agent, who takes specific

actions to his own calculus or decision rules that drive land-cover change (Lambin et al.,

1999). However, in order to give a meaningful representation of such human agents, het-

erogeneity regarding land-use decisions among these agents needs to be considered (Rand et

al., 2002). The importance of diversity in agent behavior incomplex systems (see Chapter

1) suggests that it is worth an effort to characterize the observed heterogeneity in an agent

population (Fernandez et al., 2003). Some recent studies have shown that differences in the

livelihood background of the human agents usually result indifferent patterns of land-use

behavior (e.g. Le, 2005; Caviglia-Harris and Sills, 2005; Soini, 2006). Therefore, any clas-

sification approach to derive typical agent groups for land-use choice should be based on a

meaningful representation of agent livelihoods.

In general, the livelihood of humans comprises resources orcapital, ranging from

human, natural, social, physical to financial capital, which enable the employment of strate-

gies to survive and to attain desirable livelihood outcomessuch as income, food security,

well-being and sustainable use of natural resources (Carswell, 1997; Carney, 1998; DFID,

2001). Such survival strategies are intricately linked to land-use decisions, as in rural agri-

cultural areas most of the production lines are directly dependent on land resources. Recent

studies have shown that statistically causal analyses of observed data can be used to derive

such livelihood typologies of agents, as well as the specificbehavior with respect to land-use

decisions for each human agent group (e.g. Fernandez et al.,2003; Le, 2005).

According to this discussion, this research assumes that ifcausal relationships ex-

ist between the biophysical environment, socio-economic characteristics of farmers and their

land-use actions, farmers with different livelihood typologies living in different environmental

and policy conditions will have different behavioral patterns about land-use choices. Based

on this hypothesis, this chapter has two interrelated objectives:
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1. To identify livelihood typologies of households, endogenous factors that differentiate

such households typologies, and, based on these endogenousfactors, to develop an

agent categorizing procedure.

2. To determine and calibrate land-use choice models, whereby land-use behavior should

be determined by the specific livelihood groups of the households.

In order to gain an overview of the living conditions and livelihood background of

local farmers, first a detailed description of the socio-economic setting of the study area is

given. Based on this background, the identification and categorization of livelihoods are ad-

dressed, and finally the specification of the decision-making sub-models is presented.

4.2 Socio-economic setting of the study area
4.2.1 Living conditions

The study area consists of a typical savannah parkland, withmost of the land used for small-

farm agriculture in the rainy season. Most of the area is covered by scattered compounds -

large mud buildings - that are usually surrounded by farmland of mixed cropping of ground-

nuts, cereals and rice. Small grassland patches are usuallyscattered among the agricultural

plots, serving as grazing land for the local livestock. As the area is mainly occupied by crop-

land and grazing plots during the rainy season, little natural vegetation is left, apart from

scattered trees, which mostly have economic, medicinal or social value. Only along the river

banks and in stony areas, patches of dry-savannah vegetation are left, since regular flooding

and infertile soils limit the agricultural use of this land.In the dry season, small irrigated

patches for tomato cultivation can be found mostly along theriverside, while the soils of the

remaining area are left bare.

Field observations suggest that the living conditions varysignificantly among the

different households in the study area in terms of housing quality, household assets, financial

means, land and labor availability, and livestock. The compound houses usually consist of

several houses connected by mud walls, thereby forming a yard that is shared by all family

members. Many of household activities take place in this yard, such as food preparation,

cooking, eating, socializing and sleeping. The walls of thecompound houses are mostly

made of mud bricks, pure mud, or even cement in some cases. Theroofs are usually made
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of corrugated iron or a combination of mud and wood, while only few of the living rooms

are covered with thatch. Mostly, houses made with corrugated iron and cement were found

among the better-off farmers, who were often involved in irrigation farming, whereas pure

mud buildings rather represented the low-income farmer group. Many of the households

owned radios or bicycles, while donkey carts, sowing machines and bullock ploughs were

only found among 25 % of the households. Cars and fridges werealmost completely absent

in the area.

Although agriculture is the main economic activity, many households are engaged

in activities such as artefacts making, wood cutting, trading, traditional medicine, and even

white collar jobs such as teaching. The main sources of cash income include the sale of food

crops and livestock, trading, food processing and handicrafts. Field observations suggest that

better-off farmers have a tendency to derive their cash income from trading and white collar

jobs, while the low-income group of farmers is more reliant on activities such as handicrafts

and food processing. Some farmers could also be categorizedas livestock farmers, who have

a tendency to focus on cattle rearing. In general, livestock, and especially the number of cat-

tle, turned out to be a good indicator for the household’s wealth, ranging from several cattle

to a few chickens. Land resources were identified to be another indicator for the household’s

living standard, as the amount of land varied strongly amonglocal farmers. On average,

the holdings of local households had an area of 2.4 ha, with a maximum of 22.4 ha and

a minimum of 0.1 ha. Another factor describing the differences in livelihood among local

households was the availability of labor. As such, households that had many children had a

much lower capacity for generating income. These households also showed a different land-

use behavior, as they usually focused on mixed compound cultivation, which is the common

subsistence cultivation system in the area.

4.2.2 Land tenure

Understanding the land tenure system is essential for modeling the use of natural resources.

Land in the study area is perceived to be a spiritual entity, which cannot be owned by an

individual. The Tindaana or ’Earth Priest’, usually the patrilineal descendant of the first

family that settled at the place, has the spiritual authority over the land (Gyasi, 2004). The

Tindaana grants usufruct rights to families or households.Each family to whom land has
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Figure 4.1: Typical compound house in northern Ghana

been allocated has the prior right to cultivate the land in perpetuo (Gyasi, 2004). Although

ownership rights are vested in the community, each family’saccess to land is secure. The

inheritance of land in the study area is patrilinear, with only few women being in charge of

the land in cases where the husband has died or is disabled andthe male children are still of

young age.

The one who first cleared a virgin piece of land ’owns’ it, although ownership does

not give the right to sell or lease the land (Gyasi, 2004). Although leasing of land is not

allowed, some farmers tend to lend parts of their land to family members or friends, usually

in exchange for small gifts or even cash.

4.2.3 Agricultural land use

Agriculture is mainly restricted to the rainy period from May to September. During the dry

season, agriculture is only possible with irrigation, and about 38 % of the farmers are involved

in irrigation agriculture during that season. In the following, we will describe the range of
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cultivation systems and the farming practices for each of the seasons separately.

Rainy season

Under a relatively low population density until the beginning of this century, the main system

of farming was shifting cultivation. Nowadays, two farmingsystems are prevalent in the study

area: The compound farming system, which is a system of mixedcropping surrounding the

compound buildings, and the bush fallow system, which typically involves intercropping in

out-fields operated on a rotational basis.

The bush fallow system is characterized by clearing and burning of the vegetative

cover. This normally exposes the soil to erosion and leaching leading to soil infertility. While

the soil fertility used to be restored by long fallow periods, the fallow periods have drastically

decreased owing to population pressure (Botchie et al., 2003). The compound farms on the

other hand symbolize permanent agriculture with soil fertility often maintained via household

waste and animal manure. Chemical fertilizers are hardly applied in the rainy season, nor are

there any soil conservation measures applied to enhance soil fertility.

Dry season

In the study area, there are two types of irrigation methods:bucket irrigation using hand-dug

wells, and pump irrigation using large dugouts along the river banks or in the main river itself.

Although there are also small-scale dams in the study area, these cannot be used as they are

wrongly constructed. Only in the areas near Navrongo are a few small-scale dams still in use,

apart from the two large-scale dams Tono and Vea, which are located west and east of the

study area.

The irrigation capacity of bucket irrigation is lower than that of pump irrigation,

which usually results in smaller irrigated patches for bucket irrigation. Furthermore, dugouts

and wells need to be maintained almost permanently, which requires high labor input, and in

many cases laborers are hired. Further expenditures for pump irrigation involve the continu-

ous repair of the motor pumps, and the costs for oil and petrol, while for bucket irrigation only

buckets and ropes are needed. The variety of crops grown during the dry season is mainly

confined to local tomato varieties, either in monocultures,or in mixed cultures with small

amounts of red pepper, onions or leafy vegetables. Fertilizer application is practiced by all
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irrigation farmers, with the main chemicals being Urea and DDT.

4.2.4 Main cropping systems

Since the spatial distribution and dynamics of land-use types is of prior concern in this study

of land-use/cover change, it is necessary to obtain a valid definition of these land-use types.

The difficulty in defining the main land-use types is that many crops are grown in combi-

nation with others, which leads to a high variety of land-usetypes if all combinations are

considered. To reduce this variety in a reasonable way, different combinations of land-use

types were tested for their relevance to the land-use model.To make sure that the model

reflects the dynamics of land-use change in a reasonable way,those land-use types were cho-

sen that were best represented by the livelihood backgroundof the farming households. This

way, the following main land-use types could be identified for the rainy season: The mixed

compound system, mixed cultures based on groundnuts, monocultures of groundnuts, rice,

monocultures of cereals and a class consisting of the minor crops soybeans (Glycine max)

and sweet potatoes (Ipomoea batatas). In the dry season, where the tomato is the by far most

prevalent crop, only the two land-use types monoculture of tomatoes and a mixed culture

based on tomatoes could be identified.

Cropping sytems in the rainy season

The compound farm system is a permanent mixed cropping system consisting mainly of early

millet, late millet, guinea corn, cowpeas and leafy vegetables. Minor crops such as tobacco

and okra, which are usually grown in the inner circle of the compound, were omitted in the

analysis due to their low quantities. This system is mostly located around the compound

buildings, and soil fertility is regenerated by techniquestraditionally involving mainly house-

hold refuse and manure from the livestock (Gyasi, 2004). This land-use type is the most

widespread cultivation system, covering 48.2 % of the totalcultivated area in the study area.

The monoculture system of groundnuts occupies about 7.8 % ofthe cultivated area.

Groundnuts (Arachis hypogaea) are less nutrient-demanding than the other staples grown

in the area and can therefore be easily cultivated on gravelly or sandy-loamy soils, which

are usually not suitable for other local staples. Furthermore, there is a tendency to cultivate

groundnuts on distant plots, as this crop is less labor intensive than other local crops.
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Figure 4.2: Typical groundnut and millet fields in the Atankwidi catchment

In Africa, the groundnut is considered a women’s crop (Kennyand Finn, 2004). This is also

substantiated by an analysis of household data, showing that the percentage of women within

a household is highly correlated to the percentage of area with groundnuts. Groundnuts were

originally grown by women to supplement their family diet with protein (Kenny and Finn,

2004). However, groundnut production can also be a way for women to earn cash income

and participate in the economy. Among rainy season crops, the groundnut is the staple most

often retailed, although, in general, the disposal rate of rainy-season food crops is quite low,

due to the subsistence nature of rainfed cultivation.

The mixed culture based on groundnuts is, with 29.1 %, the second most widespread

cultivation system in the study area. Within this system, groundnuts are often combined with

bambara beans or cowpeas, and sometimes with late millet, which helps to enhance soil

fertility. Another reason for combining groundnuts with beans on distant plots is that beans

are not eaten by birds and therefore do not require supervision.

In 86.7 % of the cases, the rice-based system consists of a rice monoculture. The

remaining 13.7 % of mixed cultures consist in most of the cases of a combination of guinea
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Figure 4.3: Typical rice fields in the Atankwidi catchment

corn and rice, and sometimes of a combination with small amounts of early millet, late millet

or okro. Until recently, most of the rice cultivated was African rice (Oryza glaberrima),

which was gradually replaced by Asian rice (Oryza sativa) in most parts of the study area.

Rice production has increased during the last decades due toan improved access to tractors,

which facilitates the field preparation on the heavy clayey-loamy soils that are usually suitable

for rice cultivation. In total, rice fields cover about 6.7 % of the cultivated area.

The monoculture of cereals is, together with rice, the cultivation system with the

greatest distance from the compound, with an average distance of 1 km. It consists of different

combinations of Guinea corn (Sorghum guineense), early millet (Milium vernale), late millet

(Pennisetum claucum) and sometimes maize (Zea mays). Guinea corn, which was originally

adopted from a neighboring region, is increasingly cultivated in the study area, as it is more

adapted to the reduced length of the rainy period, which is possibly a result of climate change.

The small quantities of maize, which usually need chemical fertilizers to grow well, are

remnants of the times before the structural adjustment program, when fertilizer was locally

subsidized by the government. Cereal monocultures are usually cultivated along the riverside,
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where the nutrient supply is sufficient, covering about 7.4 % of the total cultivated area.

The other cropping types, covering only 0.7 % of the cultivated area, comprise

monoculture of soybeans and cultures based on sweet or Irishpotatoes, usually mixed with

red pepper. These two cultivation types had to be combined inone land-use type, since their

occurrence turned out to be too low to allocate them to two separate classes.

Cropping systems in the dry season

As the tomato is the by far most prevalent crop in the dry season (90 % of all irrigated crops

are tomatoes), the only meaningful classification of land-use types in this season was a sep-

aration among monocultures of tomatoes and mixed cultures based on tomatoes. The major

tomato varieties used are ’Petromech’ and ’No Name’, sometimes combined with onions,

red pepper and leafy vegetables in a mixed culture system. These mixed systems amount to

about 40 % of the irrigated area, the remaining 60 % being tomato monocultures. In general,

irrigation is quite a young business in the study area. The irrigation farming in the study area

only began around 16 years ago by using bucket irrigation. Nowadays, about 38 % of the

farmers are involved in irrigation farming, with 35 % of themusing motor pumps, and 65 %

still practicing bucket irrigation. The choice of irrigation method does not seem to have an

influence on the choice of land-use type.

4.3 Modeling livelihood groups

As studies suggest the importance of heterogeneity in land-use decisions (Fernandez et al.,

2003), an approach to represent this heterogeneity is required. It is a common assumption

that land-use decisions are related to the livelihood strategy of a farming household; thus the

diversity of agents regarding land-use decisions can be achieved by a categorization of these

agents into group with individual livelihood strategies. Some recent studies have shown that

statistical analyses of empirical data can be used to derivesuch agent typologies, as well as

specific behavior with respect to land use for each agent group or typology. In this chapter,

the statistical methods for the derivation of agent groups as well as the range of explanatory

livelihood indicators and the corresponding results are presented.
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4.3.1 Identification of livelihood groups

Livelihood indicators

We applied the concept of the livelihood framework for selecting criteria that represent the

livelihood structure and strategy of farming households. The livelihood framework is a con-

cept which divides a household’s resources into five different categories, called household

assets. These comprise human, social, financial, natural and physical capital (Ashley and

Carney, 1999; Bebbington, 1999; Campbell et al., 2001). Forrepresenting livelihood groups

in a reliable way, indicators within each of these categories needed to be selected. The notable

advantage of this diversified selection of indicators is that, by doing so, biased selections of

grouping criteria are avoided (Campbell et al., 2001).

Based on this approach, the understanding of livelihood disparities in the study area

(see section 4.2) and available studies of livelihood indicators of Ghanaian households (see

Ghana Statistical Service, 2000; Ashong and Smith, 2001; Yaro, 2000), the following vari-

ables (see Table 4.1) were selected to represent the overalllivelihood typology of a farming

household:

1. Three variables indicating the household’s human resources: household size, labor

availability, and dependency ratio

2. Two variables representing the household’s financial capital: total gross income and

total gross income per capita

3. Three variables describing natural capital: cultivatedarea in the rainy season, total

holdings, and total holdings per capita

4. Two variables representing physical and social capital:livestock index and number of

cattle.

Apart from the above indicators, the percentages of income from the monoculture

of groundnuts, the mixed culture based on groundnuts, and compound farming were in-

cluded in the statistical analysis, as they directly indicate the livelihood strategy regarding

land use. Field observations and statistical analysis suggest that these incomes differ signifi-

cantly among households with different livelihood backgrounds. This way, households with
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a higher tendency to practice subsistence farming usually focus rather on compound farm-

ing, as this land-use type provides the basic staples for home consumption. On the other

hand, households with a tendency towards market-based farming are more inclined to culti-

vate groundnuts for sale, especially in monocultures.

Statistical analyses

Based on the above selected livelihood indicators, two statistical methods were employed

for the identification of agent groups, i.e. Principle Component Analysis (PCA) and k-mean

Cluster Analysis (k-CA). PCA is a statistical method to condense a set of variables into a

smaller set, while k-CA is a method to derive clusters of cases (in our case agent groups).

We conducted PCA using all livelihood indicators (Table 4.1) to identify important indicators

that differentiate household livelihood typologies. Subsequently, k-CA was applied to these

condensed variables and used to identify typical householdlivelihood typologies.

Principle component analysis

Since the dimension of the selected set of livelihood indicators was too large for further anal-

ysis, we used the method of PCA to reduce the dimension of thisvariable set. This method

condenses those variables that highly correlate with each other to one Principle Component,

with the aim of minimizing the loss of information induced bythis condensation. The Princi-

ple ComponentsPCj derived in such a way can be formally expressed as linear combinations

of the standardized original variables:

PCj =
∑

j

bi j · Xi (4.1)

whereXi are the standardized original variables, and the loadingsbi j the coefficients calcu-

lated by SPSS. The values of the coefficients are determined in such a way that the Principle

Components correlate with each other at a lowest level possible. The aim of the PCA is there-

fore to detect components which best represent the observedcoherences between the original

variables.

We ran PCA with Varimax rotation and the Kaiser normalization, and the scores

of extracted Principle Components were saved and standardized. Based on the values of the
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Table 4.1: Livelihood indicators for categorizing farmingagents

Variable Definition

Hsize Size of household (number of household members)
Hlabor Availability of household labor (number of workers)
Hdepend Dependency Ratio (Hlabor / Hsize)
Hgross inc Gross annual household income (local currency)
Hgross inc percap Gross annual household income per capita (local currency)
Hholdings Total area of holdings (the land owned by the household (m2))
Hholdings percap Total area of holdings per capita (m2)
Hcult rainy Total area cultivated in the rainy season (m2)
Hlivestock Livestock Index
Hcattle Cattle number owned by the household
H% inc lu 2 Percentage of income from the cultivation of monocultures of

groundnuts (land-use type 2) of gross income of rainy-season
cultivation

H% inc lu 3 Percentage of income from the cultivation of compound farming
(land-use type 3) of gross income of rainy-season cultivation

H% inc lu 6 Percentage of income from the cultivation of mixed groundnut
cultures (land-use type 6) of gross income of rainy-season
cultivation

weight parametersbi j , we finally named the Principle Components after those initial variables

that had the highest correlation to the components (Table 4.3).

K-mean cluster analysis

To derive agent groups, we used the standardized scores of the Principle Components to run

k-mean Cluster Analysis. The k-means algorithm is an algorithm to cluster objects based on

selected attributes into k partitions, while the objects ofone partition should feature similar

variable characteristics, and those of different partitions dissimilar ones. Mathematically, the

objective of this algorithm is to achieve the minimization of total intra-cluster variance V,

expressed as:

V =
k∑

i=1

∑
xj∈Si

(xj − µi)
2 (4.2)

whereSi, i = 1, . . . , k are thek clusters (in our case agent groups), thexj ∈ Si the elements
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of each cluster (in our case household agents), and theµi are the centroids or means of each

cluster. Each of thexj andµi has as many dimensions as the data set, i.e. one dimension for

each variable. Thus, (xj − µi)2 can be regarded as the distance of the agentxj to the group

centroidµi.

The main advantages of this algorithm are its simplicity andspeed, which allows it

to be run on large data sets. On the other hand, its major drawback is that it does not yield the

same result with each run, since the resulting clusters depend on the initial random assign-

ments (Bühl and Zöfel, 2000). But due to the relatively largedata set, and the fact that each

run resulted in the same classification, this approach seemed to be appropriate.

Results

The PCA was applied to the selected variables characterizing livelihood patterns (Table 4.1)

and resulted in 7 Principle Components. The total variance explained amounted to 95 %

(Table 4.2), which is quite high, meaning that only 5 % of the information was lost by the

replacement of the original variables through Principle Components. In Table 4.3, the Ro-

tated Component Matrix is presented, showing the weight parameters bij among the Principle

Components and the original variables characterizing livelihood typologies, whereby values

below 0.1 were omitted for a better overview.

The first Principle Component is strongly related to the variables of labor availabil-

ity (bi j = 0.953) and household size (bi j = 0.929), and is therefore named the ’labor factor’,

which accounts for 25.6 % of the total variance explained. A pair correlation among these

two variables showed that they are highly correlated (Pearson’s R= 0.885, p< 0.001). The

second Principle Component shows high correlations to the total area of the owned by the

household (bi j = 0.896), the total area owned by the household per capita (bi j = 0.840), and

the area cultivated in the rainy season (weight parameter= 0.755). Thus, this Principle Com-

ponent was labeled the ’land factor’, accounting for 15.1 % of the total variance explained.

Pair correlations among these three variables were all significant (p< 0.001), with the Pear-

son’s R coefficients between 0.396 and 0.631.

For the third Principle Component, the livestock index and the number of cattle were

significant, showing weight parameters of 0.979 and 0.978, respectively; thus, this component

115



Land-use decisions by heterogeneous household agents

Table 4.2: Total variance explained
Extraction Sums of Rotation Sums of

Initial Eigenvalues Squared Loadings Squared Loadings

% of Cumu- % of Cumu- % of Cumu-

Components Total Variance lative % Total Variance lative % Total Variance lative %

1 3.331 25.621 25.621 3.331 25.621 25.621 2.244 17.261 17.261

2 1.980 15.231 40.852 1.980 15.231 40.852 2.118 18.291 33.552

3 1.850 14.233 55.085 1.850 14.233 55.085 1.956 15.046 48.598

4 1.710 13.154 68.239 1.710 13.154 68.239 1.826 14.045 62.643

5 1.302 10.018 78.257 1.302 10.018 78.257 1.651 12.700 75.344

6 1.090 8.386 86.643 1.090 8.386 86.643 1.304 10.033 85.377

7 1.005 7.731 94.374 1.005 7.731 94.374 1.170 8.997 94.374

8 0.363 2.792 97.166

9 0.140 1.077 98.243

10 0.095 0.733 98.976

11 0.059 0.455 99.432

12 0.055 0.420 99.851

13 0.019 0.149 100.00

was named the ’livestock factor’. This factor accounted for14.2 % of the total variance

explained, and a pair correlation among the two representing variables showed that they are

highly correlated (Pearson’s R= 0.976, p< 0.001).

The fourth Principle Component is represented by the gross household income (bi j

= 0.947) and the gross household income per capita (bi j = 0.931). Thus, we called this

Principle Component the ’income factor’, which accounted for 13.2 % of the total variance

explained. Here, we again executed a crosstab analysis, resulting in a Pearson’s R of 0.796

(p < 0.001).

The two opposing variables of the ’percentage income from monoculture of ground-

nuts’ and the ’percentage income from mixed culture based ongroundnuts’ resulted in the

fifth Principle component, called the ’groundnut factor’. These two variables exclude each

other, because the households will either tend to use a mixedculture or a monoculture of (-

0.831 and 0.960, respectively) and their Pearson’s R of -0.682 (p< 0.001). The groundnut

factor accounts for 10.0 % of the total variance explained.

The last two Principle Components are represented by only one variable each, the

percentage income from compound mixed farming (bi j = - 0.979), and the dependency ratio

116



Land-use decisions by heterogeneous household agents

Table 4.3: Rotated component matrix
Principle Components

1 - 2 - 3 - 4 - 5 - 6 - 7 -
Labor Land Live- Income Ground- Cereal Depen-
Factor Factor stock Factor nut Mixed dency

Factor Factor Factor Factor
Variables (25.6 %) (15.2 %) (14.2 %) (13.2 %) (10.0 %) (8.4 %) (7.7 %)

Hlabor 0.953 0.127 0.211

Hsize 0.929 0.125 0.193 - 0.217

Hholdings 0.251 0.896 0.110

Hholdings percap - 0.385 0.840 0.251

Hcult rainy 0.325 0.755 0.157 0.175 - 0.130

Hlivestock 0.133 0.979

Hcattle 0.148 0.978

Hgross inc percap - 0.240 0.947

Hgross inc 0.258 0.931 - 0.115

H% inc lu 2 0.960 0.193

H% inc lu 6 - 0.831 0.528

H% inc lu 3 - 0.131 -0.979

Hdepend 0.992

Notes: Numbers in parentheses are percentages of total variance of the original variable set explained
by the principle components.

(bi j = 0.992). Here, the Principle Components are named after their original variables, the

’compound mixed factor’, and the ’dependency ratio factor’, explaining 8.4 and 7.7 % of the

total variance respectively.

On these 7 Principle Components, the k-mean Cluster Analysis was applied to

derive clusters representing the specific livelihood agentgroups. The disadvantage of this

method is that the number k of clusters has to be set beforehand. To solve this problem, the

k-mean Cluster Analysis was run fork = 1, . . . , 11, and for each run the distances of each

household to the cluster centers were calculated. One household had to be omitted, as for

each k this household formed a single group, which was considered as an outlier. The target

was then to select the value for k that met the following two conditions: First, a low average
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distance to the cluster centers, and second, reasonable cluster sizes, which should be large

enough to ensure statistical validity for further applications. To analyze the first condition,

the cluster number k was plotted against the average distance to the cluster centers (Figure

4.4).

As visualized, the average distance to the cluster centers decreases untilk = 3, then

slightly increases, and finally decreases again fromk = 5 upwards. Therefore, the values of

k = 3 andk ≥ 5 had to be considered as cluster numbers. But further analysis showed that

the second condition of reasonable cluster sizes was not metanymore for values above 5. We

therefore decided to setk = 3 for this study. Descriptive statistics then were used to check if

the three clusters were meaningful (Table 4.4).

The k-CA run fork = 3 on the standardized scores of the Principle Components

resulted in three agent groups of sizes 111, 77 and 11. In Table 4.4, for each agent group

descriptive statistics of those variables are shown that best represented the Principle Compo-

nents (with the highest weight parameters). In the following, a description of the characteris-

tics of each household type is given:

Household type 1

The most conspicuous characteristic of this category of farmers is the high availability of land,

ranging from 4.500 to 223.800m2 with a mean of 31.500m2. The second characteristic is the

high diversity of land-use types cultivated by the households. In Figure 4.5, the percentages of

the gross income from each land-use type of the total gross income of rainy-season cultivation

are displayed for each farmer group. Remarkable is the difference between the three groups

in the percentage of groundnut monocultures. Among farmersfrom the first household type,

about 34.2 % of the total cultivated area is covered by groundnuts monocultures, whereas

the percentages for the second and the third household type amount only to 1.6 and 3.2 %,

respectively.

Apart from the relatively high land availability, the first group can be regarded as

the ’middle class’ of farmers, with a medium livestock indexand a medium dependency ratio.

Likewise, regarding the practice of dry-season farming, this household type can be

considered as the ’medium’ class in comparison to the respective values of the other types,

with more than 51.9 % of the farmers practicing dry-season farming. In total, this group of

118



Land-use decisions by heterogeneous household agents

Figure 4.4: Average distances to cluster centers for k clusters

’middle class’ farmers constitutes about 38.7 % of the population.

Household type 2

This class of farmers can be considered as the poorest of all household types, with the lowest

labor availability (3.724 persons per household), the lowest amount of total land holdings

(18.395m2), income per capita (2.1 million Cedis), and the lowest livestock index. The sub-

sistence level is the highest for this group, with an annual mean cash income of 4.9 million

Cedis, compared to 9.5 and 31.5 million Cedis for the household types 1 and 3, respectively.

The income proportion from mixed groundnuts and compound farming is dominant within

this group, while the proportion of rice - which is considered a cash crop - is the lowest of

all groups, suggesting that the level of subsistence farming is highest for this group. The

fraction of households practicing dry-season farming is also quite low at 35.1 % (Figure 4.6);

the majority use bucket irrigation, which is the lower-costriverine irrigation method. In total,

this household group of ’poor farmers’ makes up 55.8 % of the population.

Household type 3

Households of this group are richer than others in terms of livestock and income per capita;

income ranges from 3 to 15 million Cedis per person. The ownership of land for this group
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Table 4.4: Descriptive livelihood statistics
Agent Std.

Variables Group N Mean Std.Error Minimum Maximum Deviation

Hlabor 1 77 7.006 0.346 2 16.0 3.041
2 111 3.734 0.117 1 7.0 1.242
3 11 6.090 0.709 3 9.5 2.353

Hholdings 1 77 31463 3380 4537 223800 29659
2 111 18395 1134 1205 64078 11949
3 11 23100 4409 4820 45042 14625

Hlivestock 1 77 6872 711 368 34407 6235
2 111 5052 690 0 56336 7267
3 11 7441 1446 2270 16313 4795

Hgross inc percap 1 77 2165184 163638 239800 8152254 1435919
2 111 2127251 120611 93218 6517703 1270717
3 11 6921292 1161211 3031187 15714007 38513021

H% inc lu 2 1 77 0.342 0.037 0 0.912 0.328
2 111 0.016 0.007 0 0.585 0.077
3 11 0.032 0.032 0 0.353 0.106

H% inc lu 3 1 77 0.178 0.016 0.000 1.000 0.147
2 111 0.281 0.025 0.000 1.000 0.272
3 11 0.232 0.069 0.047 0.842 0.230

Hdepend 1 77 0.689 0.015 0.388 1.0 0.139
2 111 0.683 0.017 0.321 1.0 0.185
3 11 0.705 0.046 0.444 0.9 0.154

is medium at about 23.100m2 per household. The pattern of gross income from rainy-season

cultivation shows that households of this group focus on thecultivation of rice, with the

proportion of rice being the highest among all groups (Figure 4.5). For this group, the average

income from the sale of rice per household amounts to about 5.7 million Cedis, compared to

only 1.2 and 0.6 million Cedis for groups 1 and 2, respectively, which indicates that rice is

considered as a cash crop among farmers of this group. This further indicates that the land-

use composition of this household type is more directed towards the cultivation of cash crops

than subsistence crops. Furthermore, with 81.6 % of all farmers, this group is highly involved

in dry-season farming, with 27.3 % practicing pump irrigation, which is the most costly local

irrigation method (Figure 4.6). In total, this group of ’better-off farmers’ amounts to 5.5 % of

the whole population.
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Figure 4.6: Frequency of irrigation practices of each household group

4.3.2 Agent Categorizer

The Agent Categorizer is a classifier routine (built into GH-LUDAS) to assign agents to

their most similar group based on the identified grouping criteria (section 4.3.1). The most

straightforward approach for classifying agents during a model run is to calculate ’distances’

from each agent to each group, and assign the agent to the group with the smallest distance.

There are a number of methods that can be employed to calculate such distances, including the

Euclidian distance, which can be used to measure the distance between the agent’s values and

the mean values (of grouping criteria) of each agent group. Several methods for calculating

distances were tested in a separate model, whereby the m-logit approach showed the best

results, with 100 % of correct predictions. Using multinomial logistic regression, the distance
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of an agentA to agent groupg is calculated as:

Distg =
eαg+

∑
i βigVi∑

h eαh+
∑

j β jhV j
(4.3)

whereDistg is the distance value of agentA to groupg, Vi the values of the grouping cri-

teria (see section 4.3.1) of agentA, andαg andβg the constant and preference coefficients

of the grouping criteria for groupg. The values for the constant as well as the preference

coefficients were calculated using SPSS (Table 4.5), whereby the reference category is the

third agent group. All groups as categorized by the k-mean Cluster Analysis were correctly

predicted, justifying the use of this model for classification.

4.4 Modeling land-use decisions

Based on the identified livelihood groups, the main target was to develop decision-making

sub-models regarding the choices among land-use types and the decisions related to irriga-

tion farming. However, the relatively small sample size of irrigation farmers did not allow a

group-wise approach for modeling the dry-season-related decisions, i.e. the decision to use

irrigation and the choice of irrigation method. Instead, the preference coefficients for the

m-logit models of these choices were not determined for eachgroup separately, but for the

total population. This way, unreliable results due to smallsample sizes were avoided. In the

following, we will describe the models of the choices among rainy- and dry-season land-use

types, and the models describing the decision to do irrigation and the choice of irrigation

method.

4.4.1 Modeling choices among land-use types

In this section, the models for choices among land-use typesare presented, including the

methodology, the specification of the range of explanatory variables, and the subsequent re-

sults. For the choice among rainy-season land-use types, anm-logit model was employed,

with group-specific preference coefficients. However, regarding the choice among dry-season

land-use types, a simpler approach needed to be applied, theuse of which will be justified in

the respective section.
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Table 4.5: Parameter estimates of the m-logit model of the Agent Categorizer

Preference Coefficients
Variables Group 1 Group 2

Constant - 37.237*** 128.723***
Hlabor - 13.604** - 26.741*
Hdepend 134.921* 103.340**
Hsize 11.840* 3.735***
Hholdings 0.002 0.000
Hholdings percap - 0.012* - 0.003
Hcult rainy 0.000*** 0.001**
Hlivestock 0.000** 0.002*
Hcattle 2.467 0.167
Hgross inc 0.000** 0.000***
Hgross inc percap 0.000** 0.000**
H% inc lu 2 92.745* - 75.260*
H% inc lu 3 - 80.803** - 48.178***
H% inc lu 6 - 34.075* 12.853**

Model Fitting Information: . .
Chi-Square= 341.411, df= 26, Sig.= 0.000
Pseudo R Square: . .
Cox and Snell= 0.995, Nagelkerke= 1.000, Mc Fadden= 1.000

Specification of the variables for the m-logit model for the rainy season

Dependent variable

The dependent variable of the model is the choice of land-usetype by a household in the rainy

season. This categorical variable of land-use types comprises 6 land-use alternatives: mono-

culture of cereals, monoculture of groundnuts, mixed compound system, rice-based culture,

soybean/potatoes, and mixed culture based on groundnuts (see section 4.2.4).

Explanatory variables

For the adequate modeling of land-use choice, all factors related to local household decision-

making should be taken into consideration. This includes the environmental setting of the

household plots, the socio-economic state, and the land-use preferences of the household

(Table 4.6). The selection process of the range of variableswithin these three categories con-

sisted of both intensive farmer group discussions and the supervision of the ’goodness-of-fit’
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(R Square) of the m-logit model for the given variables.

Table 4.6: Range of variables for the m-logit model of rainy-season land-use choice
Variable Definition Data Source

Dependent Variable

Pland-use rainy Coded rainy-season land-use type Interview and
field observa-
tion

Characteristics of the plot user

Hage Age of the household head (in years) Interview

Hwives Number of wives of the household head (if the
household head is male)

Interview

Hdepend Dependency ratio (number of dependants/ total
household members)

Interview

Hhlds percap Total area owned by the household per capita Interview and
field measure-
ments

Hgender Sex of the household head Interview
Hcomp head Compound head status (1 if compound head, 0

otherwise)
Interview

H% lu 2 rainy Percentage of cultivated area of Monoculture of
Groundnuts (land-use 2)

Interview

H% lu 3 rainy Percentage of cultivated area of Mixed Com-
pound Farming (land-use 3)

Interview

H% lu 6 rainy Percentage of cultivated area of Mixed Culture of
Groundnuts (land-use 6)

Interview

Environmental attributes of land plots

Pupslope Upslope contributing area GIS-based
(DEM)

Ptexture Soil texture (ranking scale) Map-based cal-
culation

Pfertility Soil fertility (ranking scale) Map-based cal-
culation

Pirr coeff Irrigation Coefficient indicating the level of irri-
gability (between 0 and 1)

Calculation

Pdist user Distance of the plot to the land user (km) Field measure-
ment

Pdist border Distance of the plot to the national border (km) Field measure-
ment
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i) Environmental Variables

As our aim is to explicitly simulate the land-use decisions of local farmers, we have to un-

derstand the factors that play a role within these decisions. According to local interviews,

the abundance and type of grass on a piece of land is an important indicator for the farmer

whether and for which crops the soil is appropriate. Furthermore, according to traditional

knowledge, soil color, texture and moisture are further indicators for the decision among the

various land-use types. For instance, a grey surface and a sandy soft soil are considered to

be suitable for the cultivation of groundnuts, whereas harder soils are more suitable for mil-

let. Soil moisture should be high for rice cultivation, medium for cereals such as millet, and

lowest for groundnuts.

Biophysical variables were selected to represent these soil/water conditions, which

are hypothesized to be of varying importance for the different land-use types. These include

soil fertility, representing the abundance of grass, upslope contributing area, irrigation co-

efficient, and soil texture. While the upslope contributing area approximates rather the soil

moisture content caused by topography, the irrigation coefficient represents the geological

component of soil moisture including factors such as groundwater level and recharge. Among

topographic factors, upslope contributing area was selected, since this variable describes the

relative position of a land patch, being higher for valleys and lower for mounds. This differ-

entiation is important, as rice is preferably cultivated inlocal valleys, which serve as staging

areas for runoff. This way, this factor can be assumed to play a role in the identification of

rice plots, as the local position of the piece of land is part of the farmer’s considerations. Soil

texture also can be considered as an indicator of land-use choice, as the local soils suitable for

the various local crops differ in the topsoil composition of particle sizes. For example, local

farmers tend to cultivate groundnuts preferably on soils with a larger mean topsoil particle

size, in contrast to other local staples.

Apart from such biophysical attributes, factors of spatialaccessibility were hypoth-

esized to influence land-use choice, including the distanceof the plot to the compound and

the distance to the national border. The distance to the compound is minimal for the land-use

type of mixed compound farming, as this land-use type is always located in the immediate

vicinity of the compound building. The reason is that mixed compound farming requires

high inputs of animal manure, which can only be transferred over short distances. Land-use
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types based on groundnuts are usually located further away from the compound, as ground-

nuts need less attention in terms of labor and management. Another factor determining the

choice of crops on distant plots is that certain crops need tobe protected from livestock and

birds. Local crops such as maize and cowpeas are preferably cultivated on distant plots, since

their seeds not eaten by birds and therefore need less protection. Apart from the distance to

the compound, the factor of distance to the national border was included in the analysis, as

we noticed a spatial gradual shift in land-use patterns along the south-north axis. This differ-

ence in land-use patterns was characterized by a higher portion of cereal-based farming in the

north together with a higher poverty level, indicating thatthe degree of subsistence farming -

which is mainly based on cereal cultivation - was higher up north. This north-south gradient

is, according to our field observations, caused by the remoteness of the northern part in terms

of infrastructure (e.g. markets, roads), which can be explained by the close distance to the

border, and by a lack of irrigation possibilities.

ii) Variables of household characteristics

The household characteristics deemed significant for land-use choice are age and gender

of the household head, number of wives (if the household headis male), compound head

status, dependency ratio, and total land holdings per capita. In the study area, a gradual shift

among land-use types from traditional cereal farming to thecultivation of rice and groundnuts

was observed during the last decades. One of the main reasonsfor this is that the younger

generations tend to prefer cash crops such as rice and groundnuts to traditional crops; this is

supported by the empirical data set, which shows a much higher percentage of such cash crops

among younger farmers. To reflect this variation in land-usepreferences, we hypothesized

the age of the household head to be an explanatory variable for land-use choice. In a similar

vein, just as there are differences among young and old farmers, there is also a difference

when it comes to the gender of the household head. Female farmers usually tend to focus on

the cultivation of groundnuts, since these are less labor-intensive, whereas the typical domain

of male farmers is cereal farming, which requires hard work for maintenance and weeding.

Therefore, we also included the gender of the household headas a hypothetical factor for

land-use choice.

The dependency ratio and the number of wives of the householdhead both reflect
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Table 4.7: Assumed effects of drivers on land-use choice
Variable Assumed effects on land-use choice

Sign Land-use type/ crop type

Hage (-) Cash Crops
Hwives (+) Groundnuts
Hdepend (+) Mixed Cultures
Hholdings percap/ 1000 (-) Cereals
Hgender (-) Groundnuts
Hcomp head (+/-) —-
H% lu 2 rainy (+) Monoculture of Groundnuts
H% lu 3 rainy (+) Mixed Compound Farming
H% lu 6 rainy (+) Mixed Groundnut Culture
Pupslope/ million (+) Rice
Ptexture (-) Groundnuts
Pfertility (-) Groundnuts
Pirr coeff (+/-) —-
Pdist user (-) Mixed Compound Farming
Pdist border (-) Cereals

the needs of the household regarding its diet. The dependency ratio reflects the number of

mouths each worker feeds, thus relating to the urgency in food demands of the household

(Fatoux et al., 2002). Households with a high dependency ratio could be forced to grow a

larger variety of crops, since most of these would be used forhome consumption. Therefore,

a high dependency ratio is assumed to be an indicator for the preference of mixed cultures

(e.g. mixed compound system, mixed groundnut culture). Thenumber of wives is a similar

factor explaining the urgency in food demands, but with the slight difference that each woman

usually holds her own groundnut plots to feed her own family,resulting in a tendency towards

groundnut cultivation.

Finally, the variable of land holdings per capita was hypothesized to be higher for

the land-use types of groundnuts, since groundnuts are onlya supplementary staple of the

local menu. Therefore, farmers with little land might tend to focus on the main staples such

as millet and Guinea corn.

iii) Land-use tendency of the household

We also have to consider that local farmers usually do not make a new land-use decision ev-

ery year, but are rather inclined to maintain continuity andrely on their previous decisions.
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Since such continuity cannot be reflected by the variables above, we decided to include fac-

tors explaining the general land-use tendency of the household. This land-use tendency is

represented by the fractions of the land-use types of the rainy-season cultivation area from

the previous year. Through the inclusion of these variablesnot only is the continuity in land-

use decisions ensured, but also the possibility of a gradualchange in these decisions, as the

land-use tendencies are allowed to change over time in GH-LUDAS. Among these land-use

fractions of the total cultivated area, we selected the mostmeaningful variables with respect

to their difference among agent groups, including monoculture of groundnuts, mixed com-

pound farming, and mixed culture of groundnuts.

Results of m-logit model of land-use choice for the rainy season

Based on these indicators, we applied an m-logit regressionfor the choice among land-use

types for each household group separately. This resulted ingroup-specific preference coef-

ficients, reflecting the overall land-use tendency of each livelihood group. In the following,

we present the results as well as the goodness-of-fit for the m-logit models (for each agent

group), and discuss the importance of selected significant land-use drivers.

Household Type 1

The results of the m-logit analysis of rainy-season land-use choice for household type 1 are

summarized in Tables 4.8 and 4.9. The preference coefficients were calculated with respect

to the land-use type mixed groundnut culture, which served as the base case. The choice of

the base case did not have any influence on the calculated preference coefficients.

The chi-square test shows that the empirical m-logit model of land-use choice for

this agent group is highly significant with p= 0.000. The Nagelkerke’s Pseudo R Square

of 0.541 shows that 54.1 % of the total variation in the probability of land-use choice is ex-

plained by the selected explanatory variables. Furthermore, for this agent group, 50.8 % of

the choices among land-use types are correctly predicted.

Household Type 2

Using the same range of variables, an m-logit regression wasalso conducted for the second

household group (Tables 4.10 and 4.11). The likelihood ratio test showed that the empirical
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Table 4.8: Group 1: Rainy-season land-use choice: parameter estimates
Rainy-Season Land-Use Type

Mono- Mono- Mixed Rice .
culture of culture of Compound based Soybean/

Variable Cereals Groundnuts Farming Culture Potatoes

Intercept - 21.181*** 7.808*** - 0.486 - 22.465*** - 16.297***
Hage 0.000 - 0.003 0.006 - 0.032 - 0.016
Hwives - 0.392 - 0.437 - 0.089 - 0.122 - 0.738
Hdepend - 0.988 - 2.210 0.002 0.544 2.028
Hhlds percap/ 1000 - 0.011 - 0.003 0.022 0.091 - 0.088
Hgender 25.067 -5.044** 0.941 23.298 16.528
Hcomp head 0.037 - 0.391 - 0.064 - 0.352 - 0.481
H% lu 2 rainy - 2.475 1.108 0.655 - 1.159 2.222
H% lu 3 rainy - 2.144 - 0.316 0.974 - 0.631 - 0.220
H% lu 6 rainy - 4.647*** - 6.037*** - 3.711*** - 2.878 - 2.069
Pupslope/ million 0.008 0.039 - 0.023 0.022 0.005
Ptexture - 0.136* - 0.045 0.051 - 0.207** - 0.198
Pfertility 0.208 0.229 - 0.004 0.579 0.267
Pirr coeff 3.814* - 0.713 3.697 2.630 - 3.073
Pdist user 0.401 - 0.381 - 1.900*** 0.422 - 0.458
Pdist border - 0.043 0.074 - 0.029 0.080 0.056

Model Fitting Information: Chi-Square= 194.017, df= 75, Sig.= 0.000
Pseudo R Square: Cox and Snell= 0.520, Nagelkerke= 0.541, Mc Fadden= 0.225

The reference category is: Mixed Groundnut Culture

Table 4.9: Group 1: Rainy-season land-use choice: classification table
Predicted

Mono- Mono- Mixed Rice Mixed
culture of culture of Compound based Soybean/ Groundnut Percent

Observed Cereals Groundnuts Farming Culture Potatoes Culture Correct

Monoculture
of Cereals 20 2 7 8 0 4 48.8 %
Monoculture
of Groundnuts 6 19 12 3 0 5 42.2 %
Mixed Compound
Farming 3 10 45 1 0 14 61.6 %
Rice based
Culture 7 6 6 8 0 5 25.0 %
Soybean/
Potatoes 0 3 1 0 0 2 0 %
Mixed Groundnut
Culture 3 5 16 1 0 42 62.7 %

Overall Percentage 14.8 % 17.0 % 33.0 % 8.0 % 0 % 27.3 % 50.8 %
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choice model is highly significant with p= 0.000. The test for the goodness-of-fit showed

that the model has an acceptably good fit, with a Nagelkerke’sPseudo R Square of 0.600.

The model also has a satisfactory predictive power, as 65.5 %of the choices are correctly

predicted.

Household Type 3

Because of the relatively small size of this agent group, twoof the six land-use types were

not found among this group, i.e. groundnut monocultures andsoybean/potatoes. Out of the

cases representing the remaining four land-use types 79.3 %were correctly predicted (Table

4.13).

Specification of land-use choice algorithm for the dry season

Two different dry-season land-use types were identified in the studyarea, namely tomato

monocultures and mixed cultures based on tomatoes (section4.2.4). The mixed tomato cul-

tures consist on average of more than 90 % of tomatoes, with only small amounts of pepper,

onions and leafy vegetables, which are mostly meant for homeconsumption. The decision to

add such small amounts of vegetables depends on the personaltaste of the farming household

head, and is thus difficult to simulate. However, there are small differences in dry-season

land-use choice among younger and older farmers, as well as among households with a low

and a high dependency ratio. An m-logit model for land-use choice was tested with GH-

LUDAS, incorporating variables such as age, number of wives, dependency ratio, as well

as environmental variables, since pepper, which is the mostprevalent crop after tomatoes,

prefers different soil and moisture conditions. Nonetheless, this model had a low predictive

power with low R Squares, which might be due to two reasons: First, the data set comprising

the two land-use types was relatively small, with only 40 plots of tomato monocultures and

15 plots of mixed cultures. Second, as already mentioned above, the decision to add such

small amounts of vegetables is difficult to model, as it is dependent on the personal taste

of the household head and his family. For these reasons and the low predictive power of the

tested m-logit model, we found that the use of such a model would not lead to reliable results,

and decided to use a simpler, more robust approach.

This approach consists of the use of the mean percentages of each of the two land-
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Table 4.10: Group 2: Rainy-season land-use choice: parameter estimates
Rainy-Season Land-Use Type

Mono- Mono- Mixed Rice .
culture of culture of Compound based Soybean/

Variable Cereals Groundnuts Farming Culture Potatoes

Intercept 0.251 -94.384 1.909 0.225 -489.287
Hage -0.007 2.820 0.013 -0.017 0.122
Hwives 0.145 -37.281 - 0.193 - 0.602 0.746
Hdepend 2.239 -185.068 -0.327 0.938 -0.438
Hhlds percap/ 1000 -0.052 0.304 -0.066 -0.087 0.410
Hgender -0.212 425.204 -0.009 0.298 15.274
Hcomp head -0.142 -68.955* -0.453 0.730 -0.097
H% lu 2 rainy 2.018 434.822* 0.626 1.017 -87.211
H% lu 3 rainy -1.101 - 309.814 1.289* - 0.135 -12.812
H% lu 6 rainy - 2.889* - 169.786 -1.505* -2.815** - 8.122
Pupslope/ million 0.058 -126.312 0.630 1.048* 3.662
Ptexture -0.101 - 7.829 -0.062 - 0.132* 22.800
Pfertility -0.148 -98.251 0.062 0.140 20.762
Pirr coeff 5.684** -2785.279* 2.418 4.860** - 146.270
Pdist user 0.589 47.659** - 6.068*** 0.339 -1.815
Pdist border - 0.012 34.547** - 0.047 0.075 - 0.046

Model Fitting Information: Chi-Square= 275.030, df= 75, Sig.= 0.000
Pseudo R Square: Cox and Snell= 0.559, Nagelkerke= 0.600, Mc Fadden= 0.305

The reference category is: Mixed Groundnut Culture

Table 4.11: Group 2: Rainy-season land-use choice: classification table
Predicted

Mono- Mono- Mixed Rice Mixed
culture of culture of Compound based Soybean/ Groundnut Percent

Observed Cereals Groundnuts Farming Culture Potatoes Culture Correct

Monoculture
of Cereals 8 0 4 7 0 11 26.7 %
Monoculture
of Groundnuts 0 4 1 0 0 0 80.0 %
Mixed Compound
Farming 0 0 93 1 0 20 81.6 %
Rice based
Culture 4 1 8 19 0 19 37.3 %
Soybean/
Potatoes 0 0 1 0 1 1 33.3 %
Mixed Groundnut
Culture 3 0 31 4 0 95 71.4 %

Overall Percentage 4.5 % 1.5 % 41.2 % 9.2 % 0.3 % 43.5 % 65.5 %
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Table 4.12: Group 3: Rainy-season land-use choice: parameter estimates
Rainy-Season Land-Use Type

Mono- Mixed Rice
culture of Compound based

Variable Cereals Farming Culture

Intercept -44063 - 48838 - 29985
Hage - 1344 - 1595 - 1070
Hwives 1390 1560 1052
Hdepend 120467 142716 95436
Hhlds percap/ 1000 - 114 - 110 - 79
Hcomp head - 6119 - 7114 - 4798
H% lu 3 rainy 90 178* 43
H% lu 6 rainy - 35638 - 41595 - 27489
Pupslope(million) - 106 - 209 - 139
Ptexture 1138 1261 777
Pfertility 3689 3712 2010
Pirr coeff 22740** 25599 15542
Pdist user - 175 - 348*** - 145
Pdist border - 83 - 8 51

Model Fitting Information: Chi-Square= 124.090, df= 39, Sig.= 0.000
Pseudo R Square: Cox and Snell= 0.676, Nagelkerke= 0.714, Mc Fadden= 0.702

The reference category is: Mixed Groundnut Culture

Table 4.13: Group 3: Rainy-season land-use choice: classification table
Predicted

Mono- Mixed Rice Mixed
culture of Compound based Groundnut Percent

Observed Cereals Farming Culture Culture Correct

Monoculture
of Cereals 1 0 0 0 100.0 %
Mixed Compound
Farming 0 9 0 2 81.8 %
Rice based
Culture 0 1 3 0 75.0 %
Mixed Groundnut
Culture 1 2 0 10 76.9 %

Overall Percentage 6.9 % 41.4 % 10.3 % 41.4 % 79.3 %

use types for each agent group. Each agent is assigned the mean percentages of the two

land-use types according to the agent group he belongs to, i.e. the agent’s choice among

the two land-use types is determined by the corresponding probabilities of his agent group.

Thus, the tendency to cultivate mixed cultures is not given by the individual agent, but is
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represented by the average tendency of the group members. Furthermore, as agent groups

are dynamic such that an agent possibly changes his group over time, this tendency is also

allowed to change during time. The mean percentages of each agent group for the cultivation

of monocultures amount to 57 % for the first group, 65 % for the second, and 61 % for the

third group. The algorithm for choosing a certain land-use type can be depicted as follows

for an agent A:

1. If A is member of groupG, set the probability to choose mixed culturePG (which is

the mean percentage of this land-use type.)

2. For a given patch, set land-use type monoculture of tomatoes.

3. Generate a random numberr between 0 and 1.

4. If r < PG , set land-use type mixed culture of tomatoes.

4.4.2 Modeling irrigation-related decisions

Methodology

For modeling irrigation-related decisions, we decided to use a two-fold nested m-logit model.

The first m-logit model will simulate the general decision ofa household agent to do dry

season farming, while the second will then simulate the choice of irrigation method, if the

decision of doing irrigation in the first step is positive (Figure 4.7). This two-fold nested

decision is taken by each household agent in each time step ofthe model run after the rainy-

season simulation procedures, and is independent of the group of agents.

In the following, we will describe the variables used for this nested decision-making

model and give reasoning for the selection of these variables. First, we will introduce the de-

pendent and explanatory variables of the first step of the model.

Specification of the variables of the first step of the m-logitmodel

Dependent variable

The dependent variable of this first step of the m-logit modelis simply the choice by farming

households between doing irrigation and not doing irrigation. This variable is represented in
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Decision of

Irrigation Farming

Skip Dry-Season

Cultivation Procedures

Pump

irrigation

Bucket

irrigation

Dam

irrigation

Yes
No

Figure 4.7: Decision tree for the nested m-logit model for irrigation decisions

the model by the dummy variable (Hdry dummy) which is 1 if the farmer is engaged in irriga-

tion during this time step, and 0 otherwise.

Explanatory variables

In the study area, field observations and insight from the household surveys showed that most

of the farming household heads who are not engaged in irrigation farming are willing to start

it. Furthermore, those who are already involved in this business, would like to expand, which

is due to the high profitability of this business. Only few household heads refused to get

involved in irrigation farming, mostly due to old age or sickness. Thus, this decision of the

household can hardly be regarded as a choice as such, but merely as a question of capability.

Explanatory variables that are hypothesized to be important in the decision for dry-season

farming should therefore reflect the capability of the household to practice irrigation. To

reflect this overall household capability, we employed an economic approach, which defines

the involvement in a business as being dependent on the availability of the four resources

labor, land, capital and knowledge. However, since manpower is abundant in the dry season

due to less farming activity, labor can be easily rented for irrigated cultivation, and is therefore

already represented by the factor financial capital.

The factor land with respect to irrigation implies that the required piece of land

should be irrigable. The access to such irrigable land is defined by local tenure rights, mean-
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Table 4.14: Variables for the first step of the nested m-logitmodel for irrigation decisions

Variable Definition Data Source

Dependent Variable

Hdry dummy Dummy variable indicating whether the
farmer is doing irrigation

Interview

Independent Variables

Hcash rainy Cash income from the rainy season (in
Cedis)

Interview and
Calculation

Hneigh dry Percentage of immediate neighbors involved
in irrigation farming

Estimation by
interviewee

Hhlds dry irrigated Area owned by the household (in
m2)

Field Mea-
surement

Hdist water Distance to water sources (including dams
and main river) in m

Map-based
Calculation

Hperc NFA Percentage of income from non-farm activi-
ties of total annual gross income

Interview and
Calculation

Hinv strat Dummy variable indicating whether the
farmer would invest in irrigation farming

Interview

ing that a single household either owns such land or can try toborrow some. Thus, two factors

can be assumed to represent the access to irrigable land. First, the ownership of such land,

and second, if no irrigable land is owned, a factor reflectingthe chance of the household to

borrow such land. In the study area, the borrowing of land is often facilitated by friendship

and family relations, meaning that land is preferably granted to relatives and friends, who

mostly live in the immediate neighborhood. This way, the chance of a farmer to obtain such

land decreases with the distance to the irrigated area. Therefore, in order to represent the

availability of land resources for irrigation with respectto land tenure, we decided to include

the irrigated area owned by the household, as well as the distance of the household to water

sources suitable for irrigation, which include both dams and the main river.

There are three main reasons why financial capital, the second factor, is needed:

First, the purchase and application of fertilizer and otherchemicals is almost inevitable for

dry-season cultivation in the study area. Second, the maintenance of two of the irrigation

methods hand dug wells and dugouts requires a large input of manpower, which has to be

covered in many cases by rented labor. Third, other expenditures, such as the repairs and
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servicing of motor pumps for pump irrigation, as well as items for bucket irrigation require

financial means. To represent this financial factor, we decided to use the variable of cash

income of the household from the rainy season. We suppose that cash income is a better

indicator for this decision than gross income, since in mostcases, the transactions for the

purchase of inputs and labor are made in cash. The cash incomecomprises the income from

the sale of agricultural products and animals, as well as theincome from non-farm activities

such as trading, food processing and handicrafts. The use ofthis variable also implies that an

appropriate modeling of cash income in each time step of the model is essential.

The third economic factor, which is hypothesized to be of importance when model-

ing the decision to do dry-season farming, is knowledge or know-how. This factor is repre-

sented by the percentage of immediate neighboring households that are involved in irrigation

farming. However, this factor does not exactly reflect the transfer mechanisms of knowledge,

which could also be mediated through clans or families instead of neighbors, but is neverthe-

less the most straightforward approach to capture this aspect as closely as possible, since the

modeling of social networks was beyond the scope of this study.

Apart from these economic factors, we included a factor representing the timely

fashion in which a farmer manages to start dry-season farming. In the study area, observations

suggest that many farmers first get involved in non-farm activities, because these activities

do not require such large cash inputs as irrigation farming.If enough financial capital is

accumulated from these non-farm activities, many farmers shift to the irrigation business. In

order to represent this factor, we included the percentage of non-farm activities of the total

gross income (per year) as an explanatory variable in our model.

Finally, in order to capture the degree of willingness of thehousehold head to en-

gage in irrigation farming, we included a dummy variable - which was obtained during the

socio-economic survey 2006 - that indicates whether the farmer would invest in irrigation

farming if he had additional income. We call this variable the investment strategy (Hinv strat).

Results of first step of irrigation m-logit model

Based on the above variables, we calculated the preference coefficients for the m-logit model

of choice between irrigation farming and no irrigation farming (Table 4.15), with the refer-

ence category being irrigation farming. All selected explanatory variables were significant
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at a level of p< 0.01, and the model had a high predictive power, with 85.4 % ofthe cases

correctly predicted, and a Nagelkerke Pseudo R Square of 0.678 (Tables 4.15, 4.16 and 4.17).

The values of the calculated preference coefficients (Table 4.15) strongly confirm

the theory of the effects of the selected variables. Thus, the lower the cash income, the lower

the probability of getting involved in dry-season farming.The same is valid for the owned

irrigable/irrigated area, the percentage of neighbors involved in irrigation farming, and the

investment strategy, which is 1 if the farmer is wiling to invest in irrigation, and 0 otherwise.

The lower all these factors are, the lower the chance of the farmer to irrigate. On the other

hand, the higher the distance to water sources and the higherthe percentage of income from

non-farm activities, the lower is this probability.

Specification of variables of second step of m-logit model

Dependent variable

The dependent variable within the second step is the choice of irrigation method once the

farmer decided to irrigate, and is represented by the household variable Hirr method. The

methods are bucket irrigation, pump irrigation, and reservoir irrigation, if a dam is available.

Explanatory variables

The most significant difference among the three irrigation methods is the difference in fi-

nancial requirements. Comparing pump and bucket irrigation, pump irrigation is the more

profitable method, since more land can be put under cultivation, but it is also the more costly

one. The maintenance of the dugout on the one hand and fuel, oil and repairs of the motor

pump on the other usually cause high costs compared to the bucket method, which is usually

less costly to operate. However, both types require high labor input for the maintenance of the

wells and dugouts, for which labor needs to be rented in many cases, thereby increasing the

input costs. Among all irrigation methods, reservoir irrigation can be regarded as the cheap-

est method, as the payment for use usually does not exceed thecosts for the other methods.

Since farmers are often forced to choose the method they can afford, we included the variable

of cash income from the rainy season to represent the financial ability of the household with

respect to this choice. For the m-logit model, the logarithmof this variable was selected.

Furthermore, we included three more variables in the m-logit model of choice of
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Table 4.15: First step of the nested irrigation decision model: parameter estimates

95 % Confidence

Interval for Exp(B)

Std. Lower Upper

No Irrigation B Error Wald df Sig. Exp(B) Bound Bound

Intercept - 0.128 0.663 0.037 1 0.847

Hcash rainy - 0.234 0.076 9.382 1 0.002 0.791 0.681 0.919

Hinv strat - 2.259 0.841 7.223 1 0.007 0.104 0.020 0.542

Hperc NFA 0.059 0.014 17.614 1 0.000 1.061 1.032 1.091

Hneigh dry - 3.680 0.798 21.290 1 0.000 0.025 0.005 0.120

Hdist dams 1.186 0.298 15.850 1 0.000 3.275 1.826 5.872

Hhlds dry/ 1000 - 0.229 0.071 10.444 1 0.001 0.795 0.692 0.914

The reference category is Irrigation

Table 4.16: First step of the nested irrigation
decision model: correct
predictions

Predicted
No Percent

Observed Irrigation Irrigation Correct

No Irrigation 96 15 86.5 %
irrigation 14 74 84.1 %
Overall Percentage 55.3 % 44.7 % 85.4 %

Table 4.17: First step of the nested irrigation
decision model: statistics

Model Fitting Pseudo
Information R Square

Cox
Chi- and Nagel- Mc

Square df Sig. Snell kerke Fadden

140.469 6 0.000 0.506 0.678 0.514

irrigation method, one representing the choice between damand riverine irrigation, and two

to separate the choice between bucket and pump irrigation. Since dam irrigation is a rela-

tively low-cost business, the only obstacle for farmers to engage in farming along a dam is

its accessibility. To represent this factor, we included the minimum distance of the farming

household to dams as an explanatory variable in the model. For the choice among the two

riverine irrigation methods, we selected two variables, i.e. the number of years the household

has been engaged in irrigation farming, and a dummy variableindicating whether the house-

hold owns a motor pump. The number of years is a reasonable indicator, as farmers usually

start their irrigation business with buckets in order to shift later to pump irrigation as soon as

the necessary financial capital has been accumulated.

138



Land-use decisions by heterogeneous household agents

Table 4.18: Variables for the second step of the nested m-logit model for irrigation decisions

Variable Definition Data Source

Dependent Variable

Hirr method Irrigation method (dam, pump or bucket irri-
gation)

Interview

Independent Variables

Hcash rainy Cash income from the rainy season (in
Cedis)

Interview and
Calculation

Hdry years Number of years the farmer is involved in ir-
rigation farming

Interview

Hpump Dummy variable indicating whether the
household owns a motor pump

Interview

Hdist dams Minimum distance to dams (in m) Map-based
Calculation

Results of second step of irrigation m-logit model

This model, which simulates the choice among the three irrigation alternatives, has a rela-

tively high predictive power (Table 4.21), with a Nagelkerke R Square of 0.940, although the

variables show fairly good significance levels (Table 4.19). Among the three irrigation alter-

natives, all cases of dam irrigation and bucket irrigation are correctly predicted, with about

76.2 % of correct predictions for the pump irrigation method. In total, 94.1 % are correctly

predicted (see Table 4.20).

The results of the m-logit regression are not fully consistent with the theory of the

influence of the selected variables as outlined above. In fact, cash income positively influ-

ences the choice of the more costly pump irrigation, but the pump dummy variable and the

number of years the farmer is involved in irrigation farminghardly show any influence in the

choice among these two riverine irrigation methods.

4.5 Summary

The assumption that differences in the livelihood background result in different land-use be-

havior is verified, as we have seen that the preferences for land-use types and the tendency

to irrigate among livelihood groups of farmers vary strongly (see Figures 4.5 and 4.6). To
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Table 4.19: Second step of the nested irrigation decision model: parameter estimates

Irrigation Std.

Method Variables B Error Wald df Sig. Exp(B)

Motor pump Intercept - 484.079 3025.502 0.026 1 0.873

Hcash rainy(log) 27.112 203.890 0.018 1 0.894 6E+011

Hdist dams - 0.130 0.000 470405 1 0.000 0.139

Hdry years - 8.647 62.060 0.019 1 0.889 0.000

Hpump - 413.307 6970.703 0.004 1 0.953 3.18E-180

Bucket Intercept - 484.079 3025.502 0.026 1 0.873

Hcash rainy(log) 26.614 203.890 0.017 1 0.895 4E+011

Hdist dams 0.131 0.000 . 1 . 1.139

Hdry years - 8.457 62.060 0.019 1 0.892 0.000

Hpump - 437.689 0.000 . 1 . 8.2E-191

The reference category is irrigation

Table 4.20: Second step of the nested
irrigation decision model: correct
predictions

Predicted
Percent

Observed Dam Pump Bucket Correct

Dam 25 0 0 100 %
Pump 0 16 5 76.2 %
Bucket 0 0 39 100 %
Perc. 29.4 % 18.8 % 51.8 % 94.1 %

Table 4.21: Second step of the nested
irrigation decision model:
statistics

Model Fitting Pseudo
Information R Square

Cox
Chi- and Nagel- Mc

Square df Sig. Snell kerke Fadden

149.595 8 0.000 0.828 0.940 0.828

derive such livelihood groups, the livelihood framework for selecting livelihood indicators

was applied, followed by the application of PCA and k-CA. Based on the identified liveli-

hood indicators, the PCA revealed seven core factors that differentiate livelihood typologies

of farming households in the study area, namely land, labor,livestock, and income factors,

two factors representing the preference for groundnut and compound farming, and the depen-

dency ratio.

Based on these seven extracted components, classification using k-CA resulted in

three livelihood typologies of households: the ’middle class’ (household type 1), the ’poor

farmers’ (households type 2), the ’rich farmers’ (household type 3). Further land-use analyses

for each household type revealed differences in patterns of land-use choice. As such, the
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cultivation of cash crops had a higher proportion among the rich and middle class farmers,

whereas the poor farmers had a tendency to focus on subsistence crops. Moreover, there

was an imbalance of irrigation practices among the identified livelihood groups, i.e. the

percentage of irrigation farmers in general and pump farmers in particluar increased with the

level of living/livelihood standard.

After the derivation of livelihood groups, sub-models for land-use choice were pre-

sented and calibrated, whereby the range of explanatory variables and the choice of model

were justified, and the results presented. These sub-modelsinclude the choice between rainy-

season and dry-season land-use types, the decision to do irrigation farming, and the choice

of irrigation method. All decision models were developed onthe basis of m-logit regres-

sion, apart from the choice among dry-season land-use types, as no meaningful variable set

could be identified to explain choices among land-use types in this season. The preference

coefficients for the m-logit model for rainy-season land-use choice were determined for each

livelihood group separately, since the results of a descriptive comparison of land-use pref-

erences among livelihood groups suggested the relevance ofsuch a differentiation. These

differences in land-use choice are reflected by the differences in the direction, magnitude and

significance of the preference coefficients, which clearly show considerable heterogeneities

in local land-use choice behavior. In general, households of all groups choose land-use types

based on the considerations of a range of household characteristics, natural conditions and

particular policy factors.

With respect to the modeling of irrigation-related decisions, a group-wise approach

was considered to be unreliable due to the relatively small sample size of irrigation farmers,

which did not allow any further splitting. Instead, the preference coefficients were computed

for the total population, which turned out to be the more robust approach. These irrigation-

related decisions were modeled as a nested m-logit model, which included the decision to do

irrigation as a first step, and as a second step, the choice of irrigation method. Both environ-

mental and household characteristics as well as policy factors were included as explanatory

variables within this nested model to reflect the socio-economic as well as the environmental

conditions necessary for the engagement in irrigation.

The results and structure of these land-use choice models were integrated into GH-

LUDAS within the Decision Module The preference coefficients were used to compute the
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land-use choice probabilities/utilities, whereby each land-use option during model run isse-

lected by an agent with its respective probability, thus allowing bounded rational decision-

making behavior.
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5 ECOLOGICAL DYNAMICS OF HETEROGENEOUS LANDSCAPE
AGENTS

5.1 Introduction

Complex processes of land-use and land-cover change (LUCC)arise not only from the diver-

sity of human decision-making, but also from the heterogeneous dynamics of the environment

(Parker et al., 2003). Environmental drivers of land-use decisions, e.g. current land cover, to-

pography, soil conditions, and agricultural productivity(see Chapter 4), often vary over space

and time. These environmental conditions can be changed either by human interventions or

by natural processes that are beyond human control (e.g. natural vegetation growth and/or cli-

mate variability). In any attempt to model environmental dynamics, it is therefore important

to consider the initial spatial heterogeneity of the landscape as well as natural processes and

ecological impacts driven by human agents, leading to changes in this heterogeneous pattern

of the landscape.

These dynamics as well as the initial biophysical conditions should be captured and

calibrated in a spatially explicit way in order to match real-world processes. According to

agent-based design, a natural landscape is represented in the form of a grid of cells that are

autonomous landscape agents. In order to obtain a spatiallyexplicit representation of the

processes and status of the landscape, every landscape unitneeds to be endowed with inter-

nal state variables storing heterogeneous spatial data, and with internal models of relevant

ecological processes, which work in response to the internal state of the landscape unit, in-

puts/interventions of human agents, and other global environmental factors (e.g. climate).

This agent-based representation of the landscape thus treats landscape dynamics as a self-

organized phenomenon, which evolves from micro-autonomous processes (Le, 2005).

Following this paradigm, two tasks were performed:

1. The identification and generation of relevant biophysical data for the initialization of

the state of the landscape agents, and

2. The development and calibration of ecological sub-models, representing the temporal

dynamics of landscape agents.
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The first task includes the characterization of the landscape environment in a spatially explicit

way, e.g. in the form of GIS raster layers using real data, including topography, accessibility,

soil and land-cover classifications, and hydrological data. A land suitability analysis for irri-

gation is also part of this task, as a meaningful representation of the irrigability of landscape

agents plays a major role in modeling irrigation-related decisions. All selected variables for

this landscape characterization should be relevant to the calibration of ecological processes,

or be main drivers of human decision-making regarding resource use.

The second task includes the development and calibration ofbiophysical sub-models,

comprising productivity functions for each land-use type,a livestock dynamics sub-model,

which is related to a specific forage productivity function,and a land-cover transformation

model. While the former two sub-models specify yield and forage productivity, the land-

cover transformation model simulates conversions among land-cover types. Since ecological

dynamics of the landscape agents are the combined result of both heterogeneous natural pro-

cesses (e.g. vegetation growth, erosion), and interventions of human agents (e.g. manage-

ment practices), the ecological sub-models are designed toconsider both natural and human

drivers.

5.2 Characterization of heterogeneous landscape agents and modeling of relevant eco-
logical processes

For a realistic representation of the landscape, both the characterization of the landscape in

terms of biophysical and environmental attributes, as wellas the respective ecological dy-

namics within this landscape have to be considered. Thus, the landscape is modeled as an

aggregation of heterogenous landscape agents, each endowed with its own state variables and

ecological processes. In this chapter, the landscape attributes relevant to land-use decision-

making and ecological mechanisms are identified and characterized, comprising land cover,

soil attributes, hydrology and topography. These attributes represent the general setup (or

static condition) of the landscape as it was in 2006.
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5.2.1 Landscape characterization

In this section, the basic characteristics of the landscapeare presented, including a land-cover

classification and the basic biophysical attributes that are of importance for the dynamics of

the coupled human-environment system of land-use/cover change. These attributes are in-

terpreted with respect to the ecosystem’s primary productivity. Furthermore, the sources and

methodology used to derive a spatial representation of these attributes are given.

Land-cover classification

Because land cover is clearly a key variable of MAS/LUCC models, an accurate mapping

of this variable is critically important for the calibration and initialization of the simulation

model (Le, 2005). An approach often used to derive main land-cover types is the analysis

of satellite images via remote sensing using automatic classification methods. Such auto-

matic classification methods extract the main land-cover types based on spectral information

of the satellite image. But since some land-cover types may exhibit similar spectral prop-

erties, the accuracy of such automatic classification algorithms is often limited. Therefore,

such algorithms are often used in association with other information sources to interpret the

automatically derived land-cover classes, e.g. aerial photographs, a high-resolution satellite

image, or ground-truth data.

An automatic classification method was conducted on the ASTER image (USGS

and Japan ASTER Program, 2007), using the Unsupervised Classification procedure in ER-

DAS. The image was taken at the end of the rainy season when thevegetation is mature,

thus showing the highest difference in spectral attributes. The Unsupervised Classification

extracted 15 spectral classes, which were then interpretedusing ground-truth data collected

in September 2006. The ground-truth data were randomly separated into two equal sets. The

first set was used to interpret the 15 spectral classes as derived by the Unsupervised Classifi-

cation, while the second was used to validate the interpreted classes.

The interpretation of the 15 spectral classes resulted in 5 major land-cover types

(Figure 5.1), including i) forest, ii) water, iii) cropland, iv) grassland, and v) bare land. Wa-

ter covered about 0.1 % of the study area, forest about 4.3 % cropland about 63.8 %, and

grassland and bare land 25.4 and 6.4 %, respectively. These values are in accordance with

previous studies (e.g. Martin, 2005). The second set of ground truth data was used to validate
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these classes. The actual value as observed by the ground-truth survey was compared to the

predicted value given by the classified land-cover map (Table 5.1). In total, 58.2 % of the

land-cover classes were correctly predicted.

Since the resolution of the ASTER Image (15 m x 15 m) did not allow a correct pre-

diction of the river network, this feature was manually digitized using the Quickbird image

(DigitalGlobe, 2007), which had a higher resolution. The width of this river network was set

to 30 m, which corresponds to the patch size in GH-LUDAS.

Determination of relevant soil-water attributes

Being one of the major determinants of an ecosystem’s primary productivity, the inclusion of

the spatial variation of the soil/water status is essential for modeling ecological processes on

the landscape scale (Park and Vlek, 2002). As the determination of these spatial soil/water

conditions is a complex issue, a reliable approach had to be used to represent this factor.

According to agent-based modeling philosophy, the most appropriate approach to model a

complex phenomenon is by identifying its basic constituentdrivers. Thus, a range of param-

eters was chosen to explain this factor of soil/water conditions: i) two direct soil parameters

to represent soil attributes, using a soil texture parameter and a soil fertility parameter, ii) sev-

eral indirect indicators explaining soil formation through topographical conditions, and iii)

two kinds of parameters describing water availability, representing runoff and groundwater

availability, respectively. The groundwater parameters include average groundwater level as

well as average groundwater recharge, while the runoff parameter is represented by a topo-

graphical wetness index, which is calculated from topographical attributes.

Table 5.1: Land-cover classification: correct predictions

Predicted
Observed Forest Cropland Grassland Bare Land Total Percentage

Forest 13 2 3 0 18 0.722222
Cropland 26 254 66 11 357 0.711485
Grassland 4 88 59 7 158 0.373418
Bare Land 0 7 16 25 48 0.520833

Total 43 351 144 43 581 0.581989
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Figure 5.1: Land-cover pattern in the study area

Soil attributes

With respect to crop productivity, soil fertility is the characteristic of the soil that supports

abundant plant life, being the combined effects of three major interacting components. These

are the chemical, physical and biological characteristicsof the soil (Soil Health, 2008). The

physical and chemical characteristics of soil are far better understood than those of the bi-

ological component; therefore quite a lot is known about thedesired chemical and physical

status of soils. (Soil Health, 2008).

The well-known main biological conditions include the abundance of organic matter

and micro-organisms, while the main chemical attributes important for plant growth comprise

the abundance of and access to nutrients and minerals (Soil Health, 2008). The physical struc-

ture of the soil is the third component defining soil fertility, and includes soil texture, depth
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Figure 5.2: Soil fertility and soil texture classificationsin the study area. Source: Adu, 1969

of topsoil, soil structure, and permeability. Since the combined effect of these attributes is

a better explanatory factor for crop productivity than the sum of these single attributes, we

decided to represent this factor by general soil fertility classes (as a rank from 1 to 5). Fur-

thermore, since soil texture seemed to play a special role inthe choice of land-use type and

crop productivity, especially in the dry season, we decidedto treat this attribute as a separate

variable. Spatial data of soil texture and soil fertility were generated using soil maps and

information from Adu (1969) (see section 2.5.2 for details).

Topographical factors

It is well known that the terrain regulates the flow of surfacerunoff and soil particles, thereby

strongly determining the landscape patterns of soil and water conditions (Gessler et al., 2000).

Numerous studies have shown how the shape of the land surfacecan affect the lateral migra-

tion and accumulation of water, sediments, and other constituents (e.g., Wilson and Gallant,

2000). These constituents, in turn, influence soil development (e.g. Kreznor et al., 1989),

and exert a strong influence on the spatial and temporal distributions of light, heat, water, and

mineral nutrients required by photosynthesizing plants (Wilson and Gallant, 2000).
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Figure 5.3: Topographic attributes of the study area

The formation of soils induced by topography refers to the concept of catena, which describes

the sequence of soils along hill slopes. The catenary hypothesis is that soil development

occurs in many landscapes in response to the way water moves through and over the land-

scape. Furthermore, terrain attributes can characterize these flow paths and, ultimately, soil
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attributes. Soil properties such as soil depth (Gessler et al., 2000; Park et al., 2001), pH, or-

ganic matter content and soil moisture content (Wilson and Gallant, 2000) have been shown

to be dependent on terrain factors. The catena principle, together with available topographi-

cal data, has been widely used in modern soil survey techniques (e.g. Dobos, 2005; Sobieraj

et al., 2004). The basic terrain factors to represent topography used in this study comprise

elevation, slope degree, and upslope contributing area, which is defined as the total drainage

area of the catchment above a certain point on the landscape.Furthermore, a wetness index

was derived from these data, representing the spatial patterns of soil moisture content as a

result of topographic surface flow, being calculated as:

Pwetness= ln

 Pupslope

tanPslope

 (5.1)

where Pwetnessis the wetness index, Pupslopethe upslope contributing area, and Pslope the

slope gradient. The upslope contributing area (Pupslope) is defined as the total catchment area

above a point on the landscape. For a grid cellP, Pupslopeis computed from the grid cells

from which the water flows into the cellP:

Pupslope=
1
b

n∑
i=1

ρiAi (5.2)

whereAi is the area of grid cellP, n is the number of cells draining into the cellP, ρi is the

weight depending on the runoff generation mechanism, andb is the contour width approxi-

mated by the cell size (Park et al., 2001). All topographicalvariables were calculated based

on the digital elevation model by Le (2006) (see section 2.5.2).

Groundwater

The final component of the soil-water factor is represented by groundwater variables, since a

wetness index alone does not describe water availability sufficiently, especially in the dry sea-

son, where rainfall plays a minimal role. Water stored from rainy-season rainfall as ground-

water plays a distinct role in dry-season irrigation farming in areas where access to dams

is limited. To represent this factor in an appropriate way, the following two variables were

included: i) the average seasonal groundwater level, as it defines the area where groundwater

150



Ecological dynamics of heterogeneous landscape agents

can be accessed through digging, and ii) the average seasonal groundwater recharge. The lat-

ter variable has been included since it describes the water table balance of the groundwater.

Spatial data on groundwater table and recharge were derivedfrom Martin (2005) (see section

2.5.2)

Spatial accessibility

Spatial accessibility can be defined as the ease with which a target location may be reached

from another location. Variables determining spatial accessibility are often key variables

when modeling land-use choice, as they define the spatial variations in required patch at-

tributes when making land-use decisions. Proxy variables that were found to play a signifi-

cant role include distances to water sources (i.e. dams and the main river) and the distance

to the national border. Distances to other features such as roads and local/main markets were

neither statistically significant in modeling land-use choice, nor did they play a role for land-

use choice according to local estimation. On the other hand,the distance of a plot to water

sources such as dams or rivers can be regarded as an importantproxy variable within the

study area, since the decision for irrigation farming on a patch is highly dependent on this

distance, as most of the irrigation activity is confined to areas along the main river and around

dams.

This factor of spatial accessibility to water bodies is represented by the variable

distance to water sources (Pdist water), which is calculated as the minimum distance from

the considered pixel to water sources, including dams and the main river. Furthermore, the

distance to the Ghana-Burkina border was another importantproxy factor, as the land-use

pattern varied strongly along the axis from the border in thenorth to the southern part of

the catchment, which was the more active area with respect toirrigation farming and other

activities. Due to lower soil fertility and lower water availability in the northern part, the

area was less populated and farming was rather focused on subsistence crops, whereas in the

densely populated southern part cash cropping was more abundant.

Features of the dams and main river were digitized using a Quickbird image, which

had been taken in early 2006. The Ghana-Burkina border was extracted from national map

(1:50000). Distance maps to these features were finally generated using the find distance

routine in ArcView GIS 3.2. Distances to nearest dams and themain river (Pdist water) were
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Figure 5.4: Groundwater level and recharge in the study area. Source: Martin, 2005

automatically calculated using NetLogo.

Analysis of land suitability for irrigation

In this section, a land suitability analysis with respect toirrigation will be presented for the

study area. The final target is to define the irrigable area as closely as possible, as this parame-

ter is essential in modeling the maximal extent of dry-season cultivation activities. According

to the FAO Bulletin for Land Evaluation For Irrigated Agriculture (FAO, 1985), the environ-

mental attributes explaining irrigability include topography, soil, water resources, climate,

and drainage. Out of these categories, a range of parametersneeded to be identified that were

explanatory factors for irrigability in the study area. In the first part of this section, we will

present and justify the range of selected variables. In the second part, we will present a model

for the determination of irrigability based on these parameters. This model calculates an ir-

rigation coefficient between 0 and 1 for each landscape agent, with the valueof 1 indicating

highest possible irrigability. Thus, a threshold between 0and 1 for this irrigation coefficient

needed to be chosen to define the final extent of the irrigable area. This threshold will be

determined by analysis in the third part of this section.
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Figure 5.5: Spatial accessibility to water sources in the study area

Model of the irrigation coefficient

Range of variables

As no data were available about the extent and pattern of the irrigable area in the study area,

we decided to develop a model simulating the irrigability ofthe landscape. According to

the FAO Land Evaluation Bulletin for Irrigation (FAO, 1985), we chose a range of indicators

from each explanatory category that seemed to be responsible for the pattern of the irrigated

area in the study area. Factors representing climatic patterns have not been included in the

analysis, due to the assumption that climate is uniform overthe study area.

According to the FAO study, the topographic features influencing irrigability in-

clude slope gradient and position; the latter is defined by elevation and distance to water

sources. Higher slope gradients usually limit the irrigation possibilities, but since the topog-

raphy of the study area can be regarded as quite smooth, this factor should not play a role as a

factor limiting irrigation. Instead, the position in relation to command area and accessibility

is considered to play a decisive role, as elevation and distance of the water source often affects

the irrigable land area in irrigation schemes (FAO, 1985). Thus, the distance of the patch to
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the main river, as well as its elevation, were included in theanalysis.

Furthermore, soil attributes with respect to water-holding capacity had to be consid-

ered. Water-holding capacity is controlled primarily by soil texture and organic matter (Ball,

2001). Soils with a high percentage of silt and clay particles have a higher water-holding ca-

pacity. Furthermore, organic matter content is related to water-holding capacity in a positive

way, i.e. the higher organic matter content usually resultsin a higher water-holding capacity

because of the affinity organic matter has for water. Since data about organic matter contents

were not available, we only included the parameter of soil texture in the analysis to represent

irrigation-relevant soil attributes.

Third, as the component of water resources had also to be taken into account, two

parameters defining groundwater availability have been included in the analysis: The average

dry-season groundwater level, and the average dry-season groundwater recharge (see section

5.3.1). Furthermore, as groundwater level alone does not define the availability of water to

the plant, the topographic wetness index was further included in the analysis to represent the

inherent soil moisture of the soil due to topography.

Modeling the irrigation coefficient

For calculating the irrigation coefficient, first an m-logit model was developed to calculate

the probability of a patch to be irrigated. The model is basedon the empirical patch-based

data set, including both irrigated and non-irrigated plots, together with a set of patch values

of the range of explanatory variables as outlined above. Based on these empirical data, the

model calculates the probability of a patch to be irrigated,with values between 0 and 1. The

calculation of this probabilityProbirr can be expressed as:

Table 5.2: Variables for explaining irrigability

Variable Definition

Pelevation Elevation (in m)
Psoil texture Soil texture represented the rank of textural class (as a range from 1 - 21)
Pdist river Distance to main river (in m)
Pwetness Wetness Index, i.e. ln(Pupslope/ tan Pslope)
Pgwl Groundwater level (m below ground)
Pgwr Groundwater recharge (mm/month)
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Probirr = α + β1 · Pelevation+ β2 · Pdist river+ β3 · Psoil texture+

+ β4 · Pgwl + β5 · Pgwr+ β6 · Pwetness
(5.3)

whereα is a constant,Pi the explanatory variables, andβi coefficients calculated by running

SPSS. In Tables 5.3, 5.4 and 5.5, the results of the m-logit model are shown, under the

assumption that a plot is irrigated when the probability is> 0.5. Comparing the observed

to predicted variable of irrigation, among the actually irrigated patches 71.0 % are correctly

predicted.

Further, we define the irrigation coefficient Pirr coeff as the probabilityProbirr for all

patches of the landscape, i.e. using the coefficients as calculated above (Table 5.3), Pirr coeff

is calculated in the following way:

Pirr coeff = α + β1 · Pelevation+ β2 · Pdist river+ β3 · Psoil texture+

+ β4 · Pgwl + β5 · Pgwr+ β6 · Pwetness
(5.4)

wherePi are the explanatory variables andβi the coefficents calculated by SPSS above. This

equation was used in GH-LUDAS to calculate the spatial distribution of the irrigation coef-

ficient as defined. Naturally, all variables apart from the groundwater-related Pgwl and Pgwr

variables are static, but due to the lack of a temporal hydrological groundwater model, these

two variables were also considered as static.

Determination of the irrigable area

The threshold for the irrigation coefficient had to be set such that the area with values above

this threshold matched the actual size of irrigable area within the catchment. The actual

irrigable area can be partitioned into: the actual cultivated area during the dry-season, and ii)

irrigable area not yet opened up. Thus, the size of the irrigable area can be regarded as the

sum of irrigated area and irrigable area not yet developed.

To define the actually cultivated area, the irrigated area ofthose households that

had been selected randomly from the different villages was summed up and upscaled thus
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Table 5.3: Modeling irrigation of patches: parameter estimates

95 % Confidence

Interval for Exp(B)

Std. Lower Upper

Not Irrigated B Error Wald df Sig. Exp(B) Bound Bound

Intercept - 8.529 4.034 4.470 1 0.034

Pwetness - 0.088 0.038 5.257 1 0.022 0.916 0.850 0.987

Pelevation 0.036 0.022 2.715 1 0.099 1.037 0.993 1.082

Pdist river 3.718 0.724 26.387 1 0.000 41.178 9.968 170.116

Psoil texture 0.706 0.270 6.847 1 0.009 2.026 1.194 3.439

Pgwl - 0.002 0.011 0.035 1 0.852 0.998 0.976 1.020

Pgwr - 0.015 0.012 1.415 1 0.234 0.985 0.962 1.010

The reference category is irrigated

Table 5.4: Modeling irrigation of patches:
correct predictions

Predicted
Not Percent

Observed Irrigated Irrigated Correct

Not Irrigated 564 11 98.1 %
Irrigated 18 44 71.0 %
Overall Percentage 91.4 & 8.6 % 95.4 %

Table 5.5: Modeling irrigation of patches:
statistics

Model Fitting Pseudo
Information R Square

Cox
Chi- and Nagel- Mc

Square df Sig. Snell kerke Fadden

230.79 6 0.000 0.304 0.644 0.568

that it represented the total irrigated area of the whole catchment population. To determine

the irrigable area not yet opened up, we followed the assumption that the maximum number

of farmers involved in irrigation is only constrained by theavailability of suitable land. It

was observed that more farmers are inherently capable of dry-season farming than farmers

actually doing it, mostly due to limitations in land availability. Therefore, the number of

irrigation farmers was assumed to converge against a certain limit during time, according to

the availability of irrigable land. This upper limit of farmers who can do irrigation farming

is then proportional to the irrigable area. In mathematicalterms, this relationship can be

expressed as:

Irrigated Area
Irrigable Area

=
Farmers doing irrigation

upper limit of farmers doing irrigation
(5.5)

With help of this equation, the amount of irrigable land can be calculated if the
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upper limit of irrigation farmers can be determined. To derive this upper limit, the number of

farmers doing irrigation from the empirical data set was plotted against time (Figure 5.6).

To approximate these data by a curve, a function had to be selected with a minimal

error to the observed data. This error is usually represented by the R Square, which is the

square of the correlation coefficient between observed and fitted data. To identify such a

curve with maximal R Square, 150 model types were tested for their R Square using the

XLfit Extension of Excel. Finally, the curve with maximum R Square (R= 0.999023) was

selected, called the Richards Function (see Figure 5.6). The mathematic expression of this

function is:

Richards(t) = f racA((1+ e(B−(C·t)))( 1
D

)) (5.6)

whereA, B, C, D are constants calculated by XLfit, andt is the time. To derive the upper

limit of farmers possibly doing irrigation, the limit for this function had to be determined: For

t → ∞, the terme(B−(C·t)) converges to 0. Thus, the limes of the function can be determined

as follows:

limx→∞Richards(x) = limx→∞ f racA((1+ e(B−(C·x)))( 1
D

)) =
A

1+ 0
= A (5.7)

Thus, the irrigable area can now be calculated as:

Irrigable Area=
Irrigated Area· A

Farmers doing irrigation
(5.8)

Based on this calculation, the irrigable area in the study area amounts to 291 ha. The thresh-

old of the irrigation coefficient to define irrigability within the model was then set to match

this number.

5.2.2 Modeling agricultural yield response

Decision-making processes in agriculture often require reliable crop response models to as-

sess the impact of specific land management (Park and Vlek, 2002). There are two distinct
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Figure 5.6: Curve estimation of the number of irrigation farmers

modeling approaches, i.e. empirical and process models, for identifying crop yield responses

(Jame and Cutforth, 1996). Process-based crop growth models are built using mathemati-

cal equations to model quantitatively plant-soil-atmospheric interactions (Sinclair and Selig-

man, 1996; Matthews 2002). Because process models explicitly include plant physiology,

agro-climatic conditions and biochemical processes, these models are supposed to be able to

simulate both temporal and spatial dynamics of crop yields.Empirical models, on the other

hand, attempt to determine functional relationships between crop yield and soil-land man-

agement factors using regression or correlation analysis to characterize these relationships

statistically. Technologically, empirical crop growth models are relatively simple to build or

develop, but these models - in contrast to process-based models - cannot take into account

temporal changes in crop yields without long-term experiments (Jame and Cutforth, 1996).

While process-based models are often preferred over empirical ones in current mod-

eling communities, empirical crop growth models still playan important role in identifying

the hidden structure of crop growth processes relating to a wide range of land management

options (Park and Vlek, 2002). Furthermore, process-basedmodels require a high level of

technological sophistication and calibration-verification procedures, which are limiting fac-

tors for a wider application (Sinclair and Seligman, 1996; Stephens and Middleton, 2002).

The failure of many of these complex process-based crop models has, understandably, been

ascribed to insufficient knowledge about the details and intricacies of the underlying physi-
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Figure 5.7: Spatial distribution of the irrigation coefficient in the study area

ological processes (Sinclair and Seligman, 1996). Naturally, these kinds of models require

careful calibration and verification, which is especially problematic for developing countries,

where the necessary technological and financial resources are not readily available (Stephens

and Middleton, 2002). Consequently, parameterization often comes from previous research

conducted in different environmental conditions or from expert opinion. Theuncertainty as-

sociated with such parameterization may greatly decrease the validity of model outputs and

the reliability of model application (Penning de Vries et al., 1989; Stephens and Middleton,

2002).

For this study, we selected the empirical approach to model land use productivity

for three reasons. First, as our modeling scale consists of cultivation systems rather than of

detailed crop varieties, it would have been unnecessarily complicated if the process-based

approach had been applied. Second, as mentioned above, the calibration and verification of

process-based models would require an understanding of theunderlying processes and data,
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which are usually not available in developing countries. Third, since the main goal is the

prediction of yield response rather than the understandingof the underlying processes, the

approach of empirical models, which are usually more robustthan process-based models, is

the more straightforward one for our purposes.

Methodology

Among empirical models, three major approaches have been used to predict crop yield re-

sponse in agricultural science: Linear Multiple Regression (LMR), Regression Trees (RT),

and Artificial Neural Networks (ANN) (Park et al., 2005). Comparisons of the goodness-of-

fit of these three approaches applied to maize yield responses in eastern Uganda can be found

in Park et al. (2005). Although regression trees seem to be a quite robust model, they clearly

have some drawbacks. They usually need a large data base to bereliable, as they only catego-

rize the observed yield data according to the different explanatory factors. Furthermore, due

to the use of a categorizing approach, their predictive power is low for input and yield values

that lie outside the observed data range (White, 1996). Finally, the difficulty in interpreting

the causal relationships is a clear drawback for the application of regression trees (Park et al.,

2005). The same is valid for artificial neural networks, as these also require a large sample

set and also tend to work as a black box. These latter two approaches also certainly have

their strengths, but as we are not only interested in predicting crop yields, but also in inter-

preting the relationships between explanatory factors andyield response, we decided to apply

the linear multiple regression approach, which allows suchinterpretations. Furthermore, the

methods regression trees and artificial neural networks require a large data set, which is not

given in our study, as we had to separate the yield data set into several land-use type specific

samples.

The general purpose of linear multiple regression is to quantify the relationship

between several independent or predictor variables and a dependent or criterion variable (in

our case yield response) by using linear combinations. Furthermore, additional terms of

the interactions among the predictor variables can be included in the model of crop yield

response, as one might easily anticipate that soil and land management variables are highly

correlated (Park et al., 2005). This way, the model can be depicted mathematically as:
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PYield = α +

k∑
i=1

βi · Xi +

k∑
i=1

k∑
j>i

βi j · Xi · X j (5.9)

whereα, βi andβi j are coefficients as calculated by the linear regression procedure, and Xi

the predictor variables suggested to explain crop yield response. The last term of this equa-

tion represents the interactions among the predictive variables. The great advantage of this

approach is that it can take into account not only the relationships of the predictor variables

with the dependent variable, but also the relationships among the multiple independent vari-

ables.

However, a purely linear relationship between predictor variables and yield is un-

realistic in most cases. Instead, it is more intuitive that the yield follows a logarithmic or

convergent curve in response to the explanatory variables,as there is a certain limit to agri-

cultural output, even if input factors and biophysical suitability increase continuously. The

most common approaches to generate such non-linear relationships include the use of the

logarithimic, square root, and reciprocal functions (see Griffin et al., 1987). The advantage

of these functions is that they still allow the use of linear regression techniques. For example,

by using the logarithmic approach, linear regression triesto identify a linear relationship be-

tween the logarithm of the output variable, i.e. yield, and the logarithms of the explanatory

factors. Although we have a linear relationship among the logarithmized variables, the rela-

tionship between the plain variables result in a logarithmic function. As such, the productivity

function based on logarithms can be mathematically expressed as:

Ln(PYield) = α +
k∑

i=1

βi · Ln(Xi ) + interaction factors (5.10)

where the interaction factors can either be products of the logarithmized or the plain variables,

being
∑k

i=1

∑k
j>i βi j · Ln(Xi) · Ln(X j) or

∑k
i=1

∑k
j>i βi j · Xi · X j, respectively. Without interac-

tions, this function is also known as the logarithmized formof the Cobb-Douglas function,

which is one of the most common functions used for predictingyield response (Griffin et al.,

1987). If interactions are used, this form is known as the transcendental production function.

Accordingly, by replacing the logarithm by square roots, the square root function can mathe-
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matically be expressed as:

√
PYield = α +

k∑
i=1

βi ·
√

Xi + interaction factors (5.11)

where the interaction factors can again either be products of the square root of the variables

or the plain variables, being
∑k

i=1

∑k
j>i βi j · √Xi ·

√
X j or∑k

i=1

∑k
j>i βi j · Xi · X j, respectively (see Griffin et al., 1987).

Finally, the reciprocal function is expressed as:

1
PYield

= α +

k∑
i=1

βi · 1
Xi
+ interaction factors (5.12)

where the interaction factors can again either be products of the reciprocal variables or the

plain variables, being
∑k

i=1

∑k
j>i βi j · 1

Xi
· 1

X j
or
∑k

i=1

∑k
j>i βi j · Xi · X j, respectively. This type of

function is usually called the modified resistance function(see Griffin et al., 1987).

General rules about which type of function to use and whetherto use forms of in-

teraction, do not exist. Rather, statistical analysis mustbe used to identify which functional

form best fits the observed data. As such, we applied all variants of functional forms to the

empirical data set in order to identify the form which best approximates the empirical yield

data. The R Square, which is a common value to measure the goodness-of-fit of the respective

fitted linear curve, is presented in Tables 5.7 and 5.10 for all these functional forms and for

each land-use type. According to these values, we will then justify the choice of functional

form.

Modeling dry-season yield response

The dependent variable of the yield response model is the total crop yield for each land-use

type, but since each agricultural land-use type can includemore than one crop, the harvests of

crops were converted to monetary values, based on the average local prices of the year 2006.

Range of variables

Crop growth is an extremely complex process in both time and space. Changes in weather
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conditions influence soil moisture, root uptake and water- and temperature-related stress on

plants. At the same time, different parts of the landscape experience different water avail-

ability and soil nutrient status because of pedological heterogeneity and lateral water-nutrient

flows related to the shape of the terrain (Park and Vlek, 2002). Apart from that, the depletion

and replenishment of soil nutrients over time and the site-specific land management (e.g labor

input) lead to significant changes in crop yield. The agricultural yield of each land-use type

can, therefore, be conceptually described as a function of climate conditions (C), soil/water

conditions (S W), and land management practices (M):

Pyield-dry= f (C,S W,M) (5.13)

Because of the relatively small size of the study area (about159km2), is is reason-

able to assume that the climate factor C is uniform over the study area. Furthermore, as no

reliable data describing the relation among climate changeand dry-season crop yield were

available, this factor was also assumed to be constant over time.

The soil/water conditions (SW) of the patches can be approximated by the irrigation

coefficient and soil fertility. The irrigation coefficient, which is calculated as a combination

of soil attributes and water-related parameters, represents the factor of water availability with

respect to the cultivation of irrigated crops. Soil fertility, on the other hand, represents a com-

bination of soil-specific parameters important for crop yield. For the model of agricultural

yield response, we decided to use these two coupled indices rather than a single biophysical

variable, since previous studies showed that one single index alone does not always give a

good representation of soil-water patterns (e.g. Western et al., 1999).

Among land management factors, labor input (in labor days) and input of agro-

chemicals (in Cedis) should be the prior variables for consideration, as these inputs directly

Table 5.6: Variables for predicting dry-season yield

Variable Definition

Ilabor Input of labor (in labor days/m2)
Ichem Input of chemicals (Cedis/m2)
Psoil fertility Soil fertility (as a range from 1 to 5)
Pirr coeff The irrigation coefficient (between 0 and 1)
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influence plant growth. It is common knowledge that tomatoesrespond well to fertilizer

applications, especially nitrogen and phosphorus. However, the sensitivity of crop yield to

these factors may be different among the two land-use types, depending on the nature of each

land-use type and actual natural conditions. The instant values of labor and chemical input

are determined by household agents, whose behavior is governed by the Decision Module.

Thus, the productivity function modeling dry-season yieldcan be formally expressed as:

Pyield-dry= f (Pirr coeff,Psoil fertility, Ichem, I labor) (5.14)

where Pirr coeff is the irrigation coefficient, Psoil fertility the soil fertility, Ichemthe amount of

agro-chemicals, and Ilabor the total amount of labor input.

Model choice and results

Based on this range of variables, all functional forms were tested on their respective R Square

for both land-use types (see Table 5.7). The logarithmic function with plain interaction terms

shows the best results for both land-use types. Therefore, we selected this functional form for

predicting dry-season yield based on the selected explanatory variables as described above.

This way, the mathematical expression of the function is as follows:

Ln(Pyield-dry) = α +
k∑

i=1

βi · Ln(Xi) +
k∑

i=1

k∑
j>i

βi j · Xi · X j (5.15)

whereXi are the explanatory variables, theβi their respective coefficients, andα a constant,

both calculated by linear regression using SPSS. The valuesof these coefficients indicate that

many of the explanatory variables are highly correlated to yield response (Table 5.8). The

basic factorsLn(Xi ) are significant at levels 0.1, 0.05 and 0.01. The input variables of labor

and chemicals are positively related to yield response, i.e. the higher these inputs, the higher

the resulting yield (although there is certainly a limit). Interesting is the fact that the irrigation

coefficient is negatively related to crop yield, i.e. the higher the water availability, the lower

the crop yields. The reason might be that poorly drained soils with little organic matter and

high clay content, as is the case in the study area, can cause ayield decline in response to
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Table 5.7: R square values for functional forms for predicting dry-season yield
Dry-Season Land-Use Types

Monoculture Mixed Culture
of Tomatoes of Tomatoes

Linear
Without Interaction Terms 0.551 0.623
With Plain Interaction Terms 0.669 0.671

Logarithmic
Without Interaction Terms 0.452 0.782
With Plain Interaction Terms 0.661 0.967
With Log. Interaction Terms 0.554 0.842

Square Root
Without Interaction Terms 0.570 0.665
With Plain Interaction Terms 0.615 0.865
With Sqrt. Interaction Terms 0.642 0.787

Reciprocal
Without Interaction Terms 0.548 0.955
With Plain Interaction Terms 0.612 0.965
With Recipr. Interaction Terms 0.623 0.956

overflooding.

Modeling rainy-season yield response

Equivalent to the modeling process of dry-season yield response, in this section we will out-

line and justify the range of explanatory variables, the choice of model for yield prediction,

and finally the results. The dependent variable of the model is land-use type specific yield

response per square meter, while the yield of the single crops of each land-use type is con-

verted to its monetary value, according to average local prices in 2006.

Range of variables

For the choice of the range of explanatory variables for rainy-season yield, we applied the

same approach as for the dry season: Thus, the yield Pyield rainyof the rainy-season land-use

types can be formally expressed as a function of climate (C), soil/water conditions (S W) and

management (M):
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Table 5.8: Predicting dry-season yield: parameter estimates
Dry-Season Land-Use Types

Monoculture Mixed Culture
Variables of Tomatoes of Tomatoes

Constant -3.025*** 56.619**
Ilabor(log) 0.641** 1.786**
Ichem(log) 1.975*** 1.211**
Psoil fertility (log) 2.345 - 54.041**
Pirr coeff (log) - 0.593** - 22.278*
Ilabor · Ichem 0.017 0.012*
Ilabor · Psoil fertility - 7.171** - 9.908
Ilabor · Pirr coeff 25.421** 28.673
Ichem· Psoil fertility - 0.001 - 0.004
Ichem· Pirr coeff - 0.003* 0.012
Pirr coeff · Psoil fertility 0.062 6.131*

Size of training data set 46 24
Size of testing data set 15 15
R Square 0.661 0.967
RMSE 4.255 6.504
CV (RMSE) 0.0398 0.0308

Pyield-rainy= f (C,S W,M) (5.16)

where the climateC is regarded as being constant in space, due to the relativelysmall size of

the study area, but variable in time. Compared to the dry season, the explanatory variables

representing the soil-water factor (S W) and the management factor (M) are naturally different

in the rainy season, and have to be selected carefully with respect to the conditions and needs

of rainy-season cultivation.

As such, the water availability required for proper plant growth in the rainy season is

more dependent on rainfall than on some kind of irrigation coefficient representing ground-

water availability. Parameters describing both the spatial and temporal variation in water

availability due to rainfall need to be considered. The temporal variation in rainfall is repre-

sented by the annual future rainfall as simulated by the Intergovernmental Panel on Climate

Change (IPCC) for the study area. The spatial variation in water availability due to rainfall is

mainly due to the topographical pattern of the area, with runoff and slope gradients playing
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Table 5.9: Variables for predicting rainy-season yield

Variable Definition

Ilabor Input of labor (in labor days/m2)
Imanure Input of manure (Livestock Index/m2)
Psoil fertility Soil fertility (as a range from 1 to 5)
Pwetness The wetness index, i.e. ln(Puslope/ tan Pslope)

a major role in water accumulation within the soil. In this study, we chose the topographic

wetness index to represent this factor of topographical water accumulation. Furthermore, in

order to consider not only the spatial variation in water availability, but also the variation in

soil suitability, we included further the discrete variable of soil fertility in the analysis.

With respect to the factor of agricultural management, agricultural labor input plays

a major role in successful cultivation, which includes landpreparation, plowing, sowing and

weeding. It is a natural assumption that an increase in thesecultivation efforts has a posi-

tive impact on plant growth. Thus, the variable of total labor input, measured in labor days

per square meter, was included as an explanatory managementfactor for crop yield response.

Furthermore, the same as for the dry season, the enhancementof soil fertility through agricul-

tural measures also plays a major role for crop yield response. In contrast to the dry season,

the use of chemicals and fertilizers for rainfed cultivation in the region is minimal. Instead,

animal manure is widely used to enhance soil fertility. As the exact amount of animal manure

was difficult to measure, this factor is represented by the livestockindex of the household

divided into fractions according to the sizes of the plots that were indicated to obtain manure

during the survey. The input of manure was then defined as livestock index per square meter.

Thus, the productivity function modeling dry-season yieldcan be expressed as:

Pyield-rainy= f (Pwetness,Psoil fertility, Imanure, I labor,R) (5.17)

where Pwetnessis the wetness index, Psoil fertility the soil fertility, Imanurethe input of manure,

Ilabor the input of labor, and R the annual average rainfall (in mm/m2) as simulated by IPCC.
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Model choice and results

The first step of modeling rainy-season yield response consists of the development of a spatial

yield-response model based on data of the year 2006, withoutconsidering rainfall data (as

these are considered to be spatially constant), while in thesecond step the timely fashion

of crop productivity will be modeled in response to annual average rainfall. In order to

select a functional form for the spatial yield model for the year 2006, the R Square for each

functional form and land-use type was calculated (see Table5.10), where the land-use type

soybeans/potatoes was omitted due to its small sample size (10 plots).Instead, the yield

for this land-use type was set constant at the mean crop yieldlevel. It is obvious that the

inclusion of interaction terms enhances the predictive power for all functional forms and

land-use types (Table 5.10). However, there is a high variation of the R Square among the

various land-use types for most of the functions, with almost all forms having one R Square

below 0.2. Therefore, and in order to be consistent with the model for the dry season, we

selected the functional form that had the most even distribution of R Squares among the land-

use types with all values above 0.2, namely the functional function based on logarithms (see

equation 5.10) with plain interaction terms, which is also called the transcendental production

function.

As the input of manure Imanurehad an empirical value of 0 for many of the cases,

the logarithm could not be taken of this variable. Instead, it was embedded in the function in a

linear way. Furthermore, the variable of Pwetnesswas already in a logarithmic form, therefore

no logarithm is taken of this variable. The results of the linear regression indicate that some of

the basic variables are significant in explaining crop yieldresponse (Table 5.11). Labor input,

soil fertility, and wetness index are all positively related to crop yield for all land-use types,

indicating that the higher the labor input, water availability and soil fertility, the higher the

corresponding crop yield. The input of manure is also positively related to crop yield for all

land-use types apart from monocultures of cereals. A reasonfor this negative relation could

be an over-fertilization of this land-use type through manure application, as monocultures

of cereals, which are usually grown along the river banks, already receive large amounts of

nutrients through seasonal flooding. For further convenience, we will call the yield calculated

by these factors the spatial yieldspatialPyield rainy:

168



Ecological dynamics of heterogeneous landscape agents

Table 5.10: R square of functional forms for predicting rainy-season yield
Rainy-Season Land-Use Types

Mono- Mono- Mixed Rice Mixed
culture of culture of Compound based Groundnut
Cereals Groundnuts Farming Culture Culture

Linear
Without Interaction Terms 0.243 0.119 0.149 0.141 0.243
With Plain Interaction Terms 0.276 0.156 0.157 0.179 0.261

Logarithmic
Without Interaction Terms 0.373 0.169 0.158 0.250 0.315
With Plain Interaction Terms 0.456 0.215 0.220 0.264 0.321
With Log. Interaction Terms 0.579 0.228 0.191 0.272 0.318

Square Root
Without Interaction Terms 0.392 0.155 0.188 0.213 0.287
With Plain Interaction Terms 0.413 0.170 0.215 0.223 0.302
With Sqrt. Interaction Terms 0.452 0.189 0.203 0.235 0.296

Reciprocal
Without Interaction Terms 0.165 0.093 0.346 0.087 0.243
With Plain Interaction Terms 0.217 0.133 0.443 0.187 0.262
With Recipr. Interaction Terms 0.682 0.198 0.465 0.187 0.262

spatialPyield rainy= Cobb-Douglas(Pwetness,Psoil fertility, Imanure, I labor) (5.18)

In order to include the temporal effects of climate change on rainy-season crop yield,

in specific changes in annual rainfall, we used a correction factor that modifies the annual crop

yield as calculated by the transcendental production function. Many studies suggest a linear

relationship between crop yield and rainfall (see Vossen, 1988; Sicot, 1989; Ellis and Galvin,

1994; Larsson, 1996). As such, Groten (1991) identified a relationship between crop yield

(in kg/ha) for millet in Burkina Faso and annual rainfall (in mm), being expressed as:

CropY = 0.91 · R (5.19)

whereCropY is crop yield, andR the amount of annual rainfall. This suggests that crop yield

can be generally described as being directly proportional to annual average rainfall, although
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Table 5.11: Predicting rainy-season yield: parameter estimates
Rainy-Season Land-Use Type

Mono- Mono- Mixed Rice Mixed
culture of culture of Compound based Groundnut

Variable Cereals Groundnuts Farming Culture Culture

Constant 6.534** 4.540 2.974*** 5.986** 8.306***
Ilabor(log) 0.868** 0.339 0.210 0.613*** 0.575 ***
Imanure - 4.317 4.830 1.769*** –.– 0.117
Pwetness 0.625*** 0.39 0.214** 0.181 0.084
Psoil fertility (log) 0.461 2.823 1.729*** 1.924 0.643
Pwetness· Psoil fertility - 0.124** - 0.091* - 0.044* - 0.055 - 0.017
Ilabor · Psoil fertility 13.213 1.580 3.102 - 0.042 - 2.477
Imanure· Psoil fertility 1.017* - 0.703 - 0.227** –.– 0.181
Ilabor · Imanure - 34.907 - 26.897 - 6.096 –.– 5.518
Ilabor · Pwetness - 4.887* - 0.398 1.197 0.056 1.028
Imanure· Pwetness 0.070 - 0.153 - 0.049*** - 0.012 - 0.034

Size of training data set 51 53 160 82 167
Size of testing data set 30 30 70 45 70
R Square 0.456 0.215 0.220 0.264 0.321
RMSE 1.145 0.710 0.959 1.176 0.754
CV (RMSE) 0.228 0.099 0.176 0.188 0.108

there is certainly a limit to the positive effect of rainfall on yield. But within a reasonable

range of rainfall data, this linear relationship can be regarded as valid.

Since the empirical productivity functions were derived from yield and input data of

the year 2006, these functions are based on the rainfall pattern in this specific year. However,

due to the linear relationship between average annual rainfall and crop yield, the effect of

rainfall of yeart in relation to the year 0 (2006) can be expressed as:

Pyield-rainy= spatialPyield-rainy· Rt

R0
(5.20)

whereRt is the average annual rainfall in mm for the yeart, R0 the rainfall (in mm per year)

for the year 0 (base year 2006). As such, an increase in rainfall by e.g. 20 % in relation to

the base year would result in an increase in yield by 20 % if allother input factors remain

constant. This is in accordance with the assumption of a linear relationship as suggested

by the studies as mentioned above. With the help of this equation and the transcendental

production function, the yield response for a specific yeart can be calculated.

170



Ecological dynamics of heterogeneous landscape agents

5.2.3 Modeling livestock dynamics

The model of livestock dynamics simulates the population oflivestock within the study area,

being expressed by the livestock index of local households Hlivestock. The model is based

on the following two assumptions: The annual decrease or increase in the livestock index is

randomly dependent on the livestock index of the previous year, and the total number of all

livestock must be below or equal to the carrying capacity of the study area with respect to

forage availability.

The first assumption of a random dependence of the livestock index of two subse-

quent years can be expressed as:

t+1Hlivestockrand= round(tHlivestockrand− σlivestock+ random(2 · σlivestock)) (5.21)

wheretHlivestockrand is the randomized livestock index at time stept, andσlivestockthe stan-

dard error of the empirical data set of the livestock index. By using this equation, the livestock

index in the current year lies randomly within a range of±σlivestockaround the livestock in-

dex of the previous year. For our purposes, this random approach is the most robust and

straightforward method to model variations in livestock, as the stock of animals within a

household is dependent on many different factors, which are difficult to model, such as birth

and death rates, diseases, sale, or the delivery of animals as gifts for funerals.

However, regardless of the small variations of the stock of animals within a house-

hold, the upper limit or carrying capacity for livestock in aspecific area can be regarded as a

restricting factor for the whole animal population. This carrying capacity is directly depen-

dent on the availability of natural resources, including water and forage; we will only take into

account the forage availability, as no related studies could be found to reliably model water

supply of local dams (which are the main source of water for animals). Stéphenne and Lam-

bin (2001) provide a model for determining the relationshipbetween livestock population

and biomass production under different rainfall patterns. The related equation is expressedas

follows:
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BiomPy· Pastd = Liv · BiomC (5.22)

whereBiomPyis the biomass productivity in tonnes/ha, Pastd the pastural area in ha,Liv the

livestock population in equivalent tropical livestock unit (TLU), andBiomCthe consumption

in biomass in tonnes/TLU. TLU is a conventional stock unit of a mature zebu weighing 250

kg (Boudet, 1975). One TLU corresponds to one cattle, one horse, five asses, 10 sheep or

10 goats. Following this equation, we can calculate the number of TLU the area can sustain

under normal conditions if we knowBiomPy, Pastd andBiomC. According to Le Houérou

and Hoste (1977), biomass productivity in Sudano-Saheliangrasslands highly depends on

rainfall. This is described by the following statistical relationship between dry matter biomass

and rainfall, taken from ground measurements by Breman and de Wit (1983):

BiomPy= 0.15+ 0.00375· R (5.23)

whereR is the annual average rainfall in mm of the current year. As future scenarios of

variable rainfall data are fed into the model,BiomPycan change over time.Pastd, the area

in ha of pastural land is calculated from the land-cover and land-use pattern of the current

year. As it is common practice that the leaves of groundnuts are dried by local farmers for

animal fodder, the area of forage productivity Pastd, does not only comprise patches with

the land cover grassland, but also patches covered by groundnut-based land-use types. This

area comprising both grassland and groundnut cultivation is updated in each time step of the

model, thus also leading to a variable outcome of biomass productivity. However, and this

is the major drawback of this model, the dietary requirementper TLU (BiomC) is regarded

as being constant at 4.6 tonnes/year (see Stéphenne and Lambin, 2001). This assumption

implies that under drought conditions, the biomass consumption per livestock unit does not

decline. However, related literature did not provide estimations of consumption behavior of

livestock in relation to drought pressure.

According to these values, the annual carrying capacity under normal conditions can

be calculated in TLU for each year. If the number of animals (in TLU) exceeds the carrying

capacity, the animal population will be reduced by a factor such that the population is equal
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to the carrying capacity. Following this mindset, we define the annual livestock index per

household as a restriction to the variable oft+1Hlivestock
randaccording to the carrying capacity

of TLU and the current number of total TLU:

tHlivestock=

{
tHlivestock

rand if tCC ≥ tTLUtotal
tHlivestock

rand· tCC
tT LUtotal

if tCC < tTLUtotal
(5.24)

wheretCC is the carrying capacity in TLU at time stept, andtTLUtotal the total number of

TLU in the study area at time stept. tTLUtotal is calculated as the sum of TLU per household.

In order to give reasonable figures for this number of TLU per household, we decided to set

this number proportional to the livestock index, which is expressed as:

t+1HT LU =
t+1Hlivestock

tHlivestock
· tHT LU (5.25)

wheretHT LU is the number of TLU for the household in time stept. In order to solve this

equation for alltHT LU, the initial value of0HT LU is calculated from the empirical data set. This

equation ensures that the number of TLU per household in eachyear reflects the livestock

index in the respective year.

This model of livestock dynamics has two purposes. First, itcalculates household

livestock numbers (livestock index) in dependence on annual rainfall and land-use behavior,

and second, it provides an estimation on whether the livestock carrying capacity of the study

area is reached, thus giving an indicator of the possible danger of overgrazing. Overgrazing

can be defined as grazing by a number of animals exceeding the carrying capacity of a given

parcel of land. Although this model assumes that the carrying capacity is never exceeded by

the total number of livestock, the model indicates that overgrazing is possible if the carrying

capacity is reached.

5.2.4 Land-cover transformation model

This routine models the natural changes among land-cover types in both seasons, which are

beyond of human control. The range of land-cover types comprises ’forest’, ’water’, ’bare

land’, ’grassland’ and ’cropland’ (section 5.3.1), whereas the land cover of grassland is absent
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in the dry season, where the climatic conditions are such that grass does not survive or grow.

For both seasons, the land-cover types of water and forest are modeled to be stable, i.e.

they do not undergo any changes, as the small patchy remnantsof forest remain traditionally

untouched. The task is, therefore, to analyze the changes among grassland, bare land and

cropland for both seasons.

As climatic conditions in the dry season hamper cultivationand natural grass growth,

most of the area is covered by bare land, apart from the small irrigated patches, which are

mostly located along the river banks. Therefore, the variable of dry-season land cover does

not comprise the land-cover type of grassland, and is updated in each time stept + 1 in the

following way:

t+1Pcover dry=



f orest if tPcover drywas forest
water if tPcover drywas water
cropland if the patch is used in time stept + 1 during the

dry season
bare land if the patch is neither covered by forest or water,

and not used in time stept + 1 during the dry season

(5.26)

In the rainy season, the land cover of bare land usually covers patches that are not

fertile enough to allow cultivation or grass growth. Therefore, a conversion mechanism from

bare land to other land-cover types for the rainy season was not considered. Furthermore,

the modeling of conversion of grassland or cropland to bare land through erosional and other

processes was beyond the scope of this study. Thus, the land-cover type of bare land was

considered as being stable within the model, i.e. it does notundergo any change (like forest

and water).

This way, the land-cover transformation model in general only regulates the natural

conversion between grassland and cropland. This way, two directions of conversion have to

be accounted for: the conversion from grassland to cropland, and the conversion from crop-

land to grassland. The conversion from grassland to cropland is regulated by the Decision

Module, in which a procedure allows the agent to use grass patches for cultivation under

certain conditions, whereas the rule for the reverse direction of conversion is dependent on

natural grass growth. It is assumed that if a patch has not been used for a certain period P
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neither in the rainy nor in the dry season, it will be steadilycovered by grass, and thus be

converted to the land-cover of grassland. This periodP, i.e. the number of yearsP a patch

needs to be covered by grass, was set to 1 through discussion with local experts and farmers.

This way, the update of the variable of land cover for the rainy season is expressed in the

following way:

t+1Pcover rainy=



f orest if tPcover rainywas forest
water if tPcover rainywas water
cropland if the patch is used in time stept + 1 during the

rainy season
bare land if tPcover rainywas bare land
grassland if the patch has not been used during the last two

seasons

(5.27)

5.3 Summary

This chapter gave an overview on the biophysical conditionsof the study area, determined

the spatial pattern of these conditions, and developed specific biophysical sub-models operat-

ing in response to these conditions, land use and socio-economic indicators. The biophysical

attributes considered include land cover (for both seasons), topographic attributes (e.g. eleva-

tion), proxy variables (e.g. distance to river), soil, and groundwater data. The spatial pattern

of land cover was identified for both seasons, based on an ASTER image using unsupervised

classification and ground truth data collected in the study area. The methodology and sources

for the development of spatial maps for local soil-water conditions were presented, including

the soil attributes of soil fertility and texture, groundwater level and recharge, and the topo-

graphic attributes of elevation, slope, upslope contributing area, and wetness index. Finally,

variables of spatial accessibility were determined, including distances to main river, dams

and the national border in the north. Justifications for the use of these variables were given in

the respective sections.

A further spatial variable that had to be determined was the variable of irrigability

Pirrigable, which required the development of a specific irrigability model, as corresponding

data were not available. This model is based on a land-suitability analysis approach for

175



Ecological dynamics of heterogeneous landscape agents

irrigation as provided by a related study by the FAO (FAO, 1985). In accordance with this

study, a range of factors was identified to explain irrigability in the study area and, based

on these factors, an irrigation coefficient between 0 and 1 was calculated for each patch by

using m-logit regression, with 1 indicating highest possible irrigability. A threshold for the

irrigation coefficient to define a patch as irrigable was finally determined.

The role of biophysical sub-models was then to define the productivity of the var-

ious land-use types, to regulate the population of livestock, and to determine the conversion

of one land-cover type to the other. As biophysical as well asabiotic factors played a role

in local crop productivity, both household (e.g. manure, fertilizer and labor input) and envi-

ronmental variables (e.g. soil fertility, wetness index) were included in the models for yield

response. Different functional forms for predicting crop yield were tested, and the functional

form with the highest R Squares for the different land-use types was selected, being the tran-

scendental production function. The strength of this function is its ability to represent the

combined effects of explanatory variables, as it integrates interaction terms between each

pair of variables. Productivity of the land-cover type of grassland was further determined in

order to calculate the carrying capacity of the livestock population, which served as a restric-

tion factor for the model of livestock dynamics. Finally, the process of land-cover conversion

in the study area was analyzed, and a respective update procedure for rainy-season as well as

dry-season land-cover type for each patch was developed.
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6 SCENARIO ASSESSMENT OF LAND-USE/COVER AND LIVELIHOOD CHANGES
IN THE ATANKWIDI CATCHMENT

6.1 Introduction

In the face of a constantly changing world, proactive land management is needed to find

successful strategies for mitigating the adverse impacts of LUCC, to avoid decisions with

negative externalities on the human-environment system and to enhance the sustainability of

the system’s functioning. As it is widely acknowledged thatdamage once done to the environ-

mental system is very difficult to undo, the far-reaching consequences of land-management

decisions need to be assessed before measures are taken. A useful tool for providing a knowl-

edge base for such informed decision-making in proactive land management and planning is

the simulation-based assessment of the evolution of the coupled human-environment system

in response to selected policy interventions. Based on thisapproach, a wide range of pos-

sible future outlooks can be generated, providing a basis for informed decision-making and

discussion among policy-makers.

Traditional approaches designed to simulate the complex pathway of LUCC often

lack this ability to reliably project alternative pathwaysof the human-environment system of

land-use/cover change. This is partly due to the fact that many of theseapproaches are only

capable of projecting one timeline into the future. For instance, statistic LUCC models are

only able to project a single future timeline of land-use/cover patterns, as they are mostly

based on transition probabilities extracted from observedhistorical data. Furthermore, the

range of models available to explore future otulooks has been limited due to their inade-

quate representation of the human-environment interrelationships. At one extreme, some

LUCC models tend to ignore the explicit roles of human actorsin the changing of landscapes

(Huigen, 2004; Veldkamp and Verburg, 2004). The weakness ofthis kind of models thus lies

not only in the lack of an assessment of future socio-economic indicators, but also in the lim-

ited ability to represent the direct impact of policy interventions on human land-use behavior.

At the other extreme, many bio-economic models tend to treatthe human influence as the

main driver of LUCC, and are thus weak in assessing the role ofenvironmental impacts on

human land-use behavior (Verburg et al., 2004). These models thus often ignore the direct

links between environmental conditions and land-use-related interventions, thus limiting the
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ability to explore future impacts of policies on the environment.

Multi-agent-based models, on the other hand, have been recognized to be well suited

to exhibit the co-evolution of the human and landscape systems based on the interactions

between human actors and their environment. Furthermore, the linkages of policy interven-

tions and other external environmental or socio-economic factors to the human as well as to

the landscape system can be effectively designed, as the bottom-up approach of agent-based

modeling allows the modeling of the direct consequences of policy interventions on house-

hold behavior and landscape attributes. GH-LUDAS in particular, was designed to explore

future outlooks of LUCC and other socio-economic indicators as a consequence of selected

policy options and other external factors.

The application of simulation-based scenarios is usually seen as a useful tool to

identify the variety of such possible future outlooks and tounderstand the consequences of

selected input parameters on the performance of the system.Scenarios are accounts or syn-

opses of projected courses of action, events or situations,and are widely used to understand

different ways that future events might unfold. Unlike classical predictions, scenarios are

not necessarily accurate forecasts of single future timelines drawn on past data, but multi-

ple possible future pathways of the system evolution under aspectrum of initial conditions

(Maack, 2001). The main purpose of such scenario development is thus to stimulate thinking

about possible occurrences, assumptions relating these occurrences, possible opportunities

and risks, and courses of action (Jarke et al., 1998). Moreover, by identifying basic trends,

stakeholders can construct a series of scenarios that will help them to compensate for the

usual errors in decision-making, i.e. overconfidence and tunnel vision (Schoemaker, 1995).

Models that allow the simulation of user-defined scenarios of policy interventions can serve

as useful decision support tools for involved stakeholders. Such tools should be user-friendly

platforms in terms of their operation and the disseminationand visualization of model results,

with the aim to enhance communication among the model and theuser(s), and among policy-

makers and other stakeholders. Multi-agent simulation models have been recognized to be

able to meet these conditions, in particular the agent-based NetLogo environment in which

GH-LUDAS was programmed. Visual formats of NetLogo, such astemporal calibrated maps

and time-series graphs, and a user-friendly interface allow the use of GH-LUDAS as a deci-

sion support tool. Possible future scenarios the user wantsto explore can be easily simulated,
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analyzed and communicated.

In this chapter, we present simulations of selected scenarios with GH-LUDAS, an-

alyze the reasons for their way of performance, and communicate the corresponding results.

However, to enhance communication of model results to stakeholders, the interpretation of

the simulated pathways of selected scenarios should not only be grounded on the analysis

of data and internal model mechanisms, but should also be vested into ’narrative storylines’,

which are easier to convey to local stakeholders. It is important that these storylines are con-

sistent with data generated by the model as well as with narrative observations during field

work and other related studies. The quality of scenario-based studies is dependent on the

reasonability of processes involved, which can be generated by mental models in a narra-

tive manner, or by formal models in a quantitative way. Each form has its own merits and

limitations, and an efficient scenario description should therefore offer ways to integrate the

narrative and quantitative traditions in a particular balance (Kemp-Benedict, 2004).

Based on this background, the objectives of this part of the study can be summarized as

follows:

1. Based on the specifications of the theoretical framework (Chapter 3 to 5), to develop

an operational GH-LUDAS model with the functionalities of adecision support tool to

support impact assessment of selected policy options and other external factors.

2. To identify and simulate integrated scenarios of the coupled human-environment sys-

tem using GH-LUDAS.

3. To provide an overview of the future pathways of these scenarios and an interpretation

of these results in the form of narrative storylines based onquantitative analysis of the

system functioning and field experience.

In the following, policy, climatic and demographic conditions in the study area will

be described, which serve as a basis to justify the selectionof external parameters of GH-

LUDAS to be modified by the user. Based on this selection, the range of scenarios to be

explored is presented. The subsequent section deals with the implementation of GH-LUDAS

as a decision support tool, describing the mode of model operation, methodologies of output

visualization and transfer, and the operation of the model interface. Finally, the scenario pa-

rameters are specified and the temporal evolution of selected relevant performance indicators

179



Scenario assessment of land-use/cover and livelihood changes in the Atankwidi catchment

of land-use/cover change and local livelihoods are analyzed and interpreted.

6.2 Selection of user-defined parameters in GH-LUDAS: Land-use policies, demogra-
phy, and climate change

In the predominantly smallholder farming systems of the Upper East Region in Ghana, liveli-

hoods are directly dependent on harvestable crop yields on aseasonal basis. The constraints

to sustainable production are the dry spells during the cropping seasons, low fertility of

farmlands, and farming practices that exacerbate the effects of drought and low soil fertil-

ity (CGIAR, 2000). The coping strategies resulting from these agroclimatic factors put a

severe brake on investment and financial accumulation. The region’s physical isolation, lack

of non-agricultural investments and underdevelopment of markets result in few opportunities

for economically meaningful off-farm employment or income generation (Whitehead, 2004).

The most recent agricultural polices in Ghana to tackle thisproblematic situation

are reflected in the Accelerated Agricultural Growth and Development Strategy (AAGDS),

the Food and Agricultural Sector Development Policy (FASDEP), and the Upper East Re-

gion Land Conservation and Smallholder Rehabilitation Project (LACOSREP) (IFAD, 2005).

These projects broadly aim at the intensification and modernization of agriculture, income

diversification, and improvement of market access. The coreagricultural policies that consti-

tute these national and regional strategies include further development of riverine irrigation,

rehabilitation and construction of dams, farmer training and dissemination of new technolo-

gies, stimulation of the engagement in income-generating activities through credit, and an in-

creased provision of infrastructure (IFAD, 2005). The promotion of irrigation through farmer

education and improvement of irrigation facilities aims atimproving food security in the

’lean season’, and the stimulation of trade markets throughincreased income and demand

for local products (Birner and Schiffer, 2005). Farmer training, meant to be implemented by

local NGOs and the local branches of the Ministry of Food and Agriculture (MOFA), focuses

on the promotion of high-yielding varieties, improvement of storage facilities, conservation

measures to reduce yield losses due to soil erosion, and improved animal care. Further-

more, these organizations are also involved in the process of selecting and advising farmer

groups that seek to apply for bank credits. These credits aimat financing crop production and

agriculture-related small-scale enterprises, mainly targeted to women heads of households
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(IFAD, 2005). Greater investment in rural infrastructure such as feeder roads and marketing

facilities aim at linking remote rural areas with high production levels to agricultural markets,

thus providing enhanced marketing opportunities for increasing incomes (MOFA, 2002).

However, many of these measures fail or have failed due to unefficient implemen-

tation or lack of finances in large parts of the region. Despite long years of development

assistance, many communities remain poor, vulnerable and suffer from regular food short-

ages (Blench, 2006). In the Atankwidi catchment, the small-scale dams, which had been

built to a large part in the 1970s, are silted due to misconstruction and thus can not be used

for irrigation, and new dam construction projects under thenew development programmes

have not been implemented. MOFA, which is in charge of farmertraining and education,

seems to have had minimal contacts with local farmers, and their advice has not seemed to

have any impact on local agricultural methods, choice of crops or livestock care. Further-

more, only 5 % of the women groups in the study area that applied for credit were finally

successful, which was observed to be due to high bureaucracylevels and lack of staff on the

side of MOFA.

In spite of these low levels of policy implementation, it seems there is agreement

about the necessary interventions on the side of policy-makers. However, there is a high

uncertainty and lack of a knowledge base about the human-environment interrelations and

the policy impact on these relationships. The actual consequences on land-use and social and

economic welfare of any of these measures are not well known.Scenario-based simulations

could assist stakeholders in focusing their financial resources on policy measures that yield

the highest returns in terms of long-term income security and equity. Therefore, with respect

to the study area, we extracted those policy interventions that deserve a closer look in terms of

their applicability and impact. The first strategy, the promotion of riverine irrigation farming,

does not seem to be an issue in the catchment, as most of the irrigable land is already claimed.

With respect to extension services, including farmer education and training either carried

out by NGOs or MOFA, statistical analysis showed no impact oncrop choice, agricultural

techniques or input, livestock survival or crop yield. It seemed thus that even higher levels

of farmer contact would not show reasonable improvements inliving standards or changes

in land-use or land-cover. Similarly, with respect to infrastructure, the proximity to feeder

roads or marketing facilities did not significantly influence household decision-making or
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local marketing opportunities. The study area is already provided with a relatively extensive

net of feeder roads, and market places are accessible from throughout the area on foot or by

bicycle. Thus, the strategies which deserve closer attention are dam construction, as there is

the ability and need among farmers to expand their irrigation business, and increased credit

access, as statistics suggest a high relationship between credit provision and improvments in

income levels.

However, decision-makers might not only be interested in the effects of their poli-

cies on local land-use and livelihood, but also in the futurepathways caused by other factors.

Reviews of the most significant changes that the region will face during the next decades com-

prise most importantly demographic changes and climate change. Due to climatic changes,

the region experiences short and erratic rainfall, which directly affects food and livestock pro-

duction (GNADO, 2000). The high population of the region is another factor that contributes

to food insecurity and the poverty. Land holdings in the region are so small that food pro-

duced on one cannot sustain a family up to the next farming season (GNADO, 2000). Based

on this reasoning, the following four families of scenarioswere identified: i) construction of

small-scale dams, ii) increased credit access, iii) population growth, and iv) rainfall changes

derived from the main four IPCC climate scenarios.

Policy of rehabilitation and construction of small-scale dams

Many small-scale irrigation schemes based on earth dams anddugouts exist in the northern

part of Ghana. Out of these, many were funded under World Bankprojects (including the

Upper Region Agricultural Development Project - URADEP) inthe 1970s. The majority of

small-scale structures have broken down over time due to poor maintenance and resulting sil-

tation problems (Gyasi, 2004). Several donor agencies, government organizations and NGOs

are involved in the rehabilitation of these schemes and the construction of new ones, which

are to be managed by farmers. Indeed, close to 90 % of rehabilitated small schemes are

successfully controlled by farmers (Dittoh, 2000). The major rehabilitation schemes in the

Upper East Region have been conducted by the IFAD-funded Land Conservation and Small-

holder Rehabilitation Project (LACOSREP), under which a total of 44 dams and dugouts

were rehabilitated (IFAD, 2005).

The ultimate targets of the provision of communities with irrigation infrastructure
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include the offer of possibilities to local smallholders to engage in cultivation during the

lean season, diversify their income structure, give incentives for increased marketing activity

through raised cash income, and provide facilities for livestock watering and fishery (Birner

and Schiffer, 2005). However, few irrigation infrastructure facilities were completed and

functional on project closure, making it difficult to assess their impact properly (IFAD, 2005).

A second question arises from the viewpoint of profitability, i.e. whether the obtained benefits

from improved irrigation infrastructure really justify the relatively high costs of dam rehabil-

itation/construction, or whether other policy measures are more efficient and cost-effective.

Therefore, an assessment of the long-term effects of irrigation scheme development on living

standards and land-use and land-cover is of great importance.

A second policy measure with respect to the final use of small-scale dams is the ap-

plication of area limitation. Our hypothesis is that the efficiency of operational dams in terms

of income equity can be increased by limiting the area a farmer is allowed to irrigate around

dams. This might allow more farmers to benefit from irrigation infrastructure, and reduce the

number of farmers that share large parts of the irrigable areas of the scheme. Although we

do not have any notice of the application of such a policy in present irrigation schemes in the

Upper East Region, the investigation of the effects of this hypothetical policy measure could

lead to interesting results for local stakeholders and water use authorities.

Policy of credit schemes

In an attempt to alleviate poverty and empower poor people, many NGOs and government-

line agencies have been providing credit to rural women in many districts of Ghana. The

essence of these credit schemes is to help the rural poor, especially women, earn a decent

living through their on-going income generating activities (Ansoglenang, 2006). It was real-

ized that women have assumed certain household responsibilities that were formerly men’s

gender roles, such as providing money and other material resources for housekeeping. These

added responsibilities have given rural women a rare voice in household decision-making pro-

cesses (Ansoglenang, 2006). Credit schemes are intended tohelp these women to increase

their engagement in a number of income generating activities, including trade, shea-butter

extraction, rice milling, pottery, local restaurant services, and alcohol brewing (Ansoglenang,

2006), and to expand these activities to small-scale enterprises. The promotion of such small-
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scale enterprises through credit schemes may help smallholder households to reduce risks and

their dependency on agriculture through income diversification, create additional income, and

stimulate marketing activity. Several case studies have emphasized the success of such credit

schemes in terms of household assets, economic activity andthe empowerment of women.

However, rates of credit provision still remain low in the region, due to lack of staff and com-

mitment on the side of the implementing agencies.

Population growth

Rapid population growth and low economic standards of living have had consequences for

agricultural land resources in the Upper East Region (Benneh and Agyepong, 1990). Fal-

low lands have been reduced or eliminated, and there has beenmassive migration of mainly

the youth to the urbanised, mining and forest areas in southern Ghana (Codjoe, 2004). The

results of the agricultural land availability status (Codjoe, 2004) shows that three selected

districts, namely, Bolgatanga, Bawku East and Kassena-Nankana located in the Upper East

Region, would experience agricultural land shortfall in the year 2010 as a result of pop-

ulation growth. However, projections of annual populationgrowth rates often lack reliable

databases of past population trends and an understanding ofthe dynamics of migration strate-

gies (Boadu, 2000). Although the dynamics of the single factors birth, death and migration

rates are poorly understood, the observed (total) population growth rate has been estimated

to 3 % in the rural Upper East Region. However, the capacity ofthese rural areas to sustain

growing populations is limited. As land availability and reduced land productivity are con-

sidered as drivers of out-migration and ultimately as limiting factors for population growth

as suggested by (Codjoe, 2004), a straightforward approachis thus to define population dy-

namics on the basis of the carrying capacity of the study area. A logistic function, which

is defined by the annual growth rate of 3 % and the total population carrying capacity (see

Chapter 3), was used in GH-LUDAS to calculate annual population increases for the study

area. Based on this, the model allows the simulation of different settings of the population

carrying capacity and an assessment of their consequences on local household behavior and

land use.
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Climate change

The Upper East Region, which is mainly a rural area with sub-humid conditions lying at

the southern end of the Sahel, could be affected by climate change in terms of increased

land degradation, declining agricultural productivity and changing land-use and livelihood

strategies. A comparison for the region between the rainfall situation in the middle of the

20th century with the period 1970-1990 reveals a major climate deterioriation, but also that

after the late 1980s the situation improved again until the 1997 drought, which was generally

seen as problematic (Dietz et al., 2004). However, local farmers who were interviewed in

the study by Dietz et al. (2004) saw a lot of evidence of long-term climate change, and have

already been reacting to it. Changes regarding the onset of and a shortening of the rainy

period has urged farmers to change the composition of their livelihood portfolios by relying

more on non-agicultural sources of income, by adding more market-oriented agricultural

crops (tomatoes, onions), and by changing their food production strategies to more drought-

resistant varieties (Dietz et al., 2004).

It is therefore an important issue to understand the mechanisms between household

decision-making and scenarios of future climate conditions, especially changes in rainfall

patterns. To test household-based reactions to changed annual precipitation, we derived long-

term data of annual precipitation changes for the study areafrom the IPCC Data Distribution

Centre (www.ipcc-data.org), and linked them to functions of biomass productivity as pro-

posed in the study by Groten (1991) (see section 5.3.3). These precipitation scenarios rely on

the four basic global climate scenarios as presented by the IPCC SRES (Special Report on

Emissions Scenarios), named A1, A2, B1 and B2, which cover a wide range of driving forces

from demographic to social and economic developments. The annual precipitation reduction

for these scenarios amounted to 2.87 mm/year for the A1, 0.36 mm/year for the A2, 2.84

mm/year for the B1, and 2.48 mm/year for the B2 scenario. Based on these values and the

current average annual precipitation, the annual precipitation (mm/year) for each scenario

was calculated and used for calculating forage availability (equation 5.23) and agricultural

productivity of rainy-season cultivation (equation 5.20).
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6.3 Developing an operational GH-LUDAS for policy decisionpurposes
6.3.1 Methodology

The GH-LUDAS theoretical framework (Chapter 3) was programmed in the NetLogo pack-

age 4.0.2. NetLogo, which is a freeware provided by Wilensky(1999), is a multi-agent

modeling environment, which offers both a convenient language to programme agents (and

their interactions) and tools to visualize and export results. The NetLogo environment con-

sists of two main pages between which the user can switch, onereserved for the programme

code, and a second, the model interface, which allows the setting of model parameters and

the visualization of results. GH-LUDAS is thus a convenientplatform for decision-makers,

as they can easily choose among options, set parameters and view output graphs and maps on

the interface page without necessarily understanding the source code. The procedures pro-

grammed in the code interface follow a schematic annual time-loop (section 3.6.2), starting

with the updating of the population, followed by the routines for the dry and rainy season,

and ending with the visualization and export of selected household and landscape data. These

routines were verified separately as well as in combination,i.e. they were examined whether

they work the way they were intended to.

The output of model simulations, which may serve as a basis for discussion among

stakeholders, does not only depend on the specifications of the model routines, but also on

model input data. Such input data comprise data and parameters that have been calibrated by

the modeler, and external parameters that are defined by the user.

Input data of GH-LUDAS

Data that are defined by the modeler comprise calibrated input data, including spatial (GIS)

data, household data, and specific parameters, mainly technical coefficients that have been

extracted from quantitative analyses in case studies (Chapters 4 and 5). The household and

GIS datasets were needed to initialize the coupled human-landscape, while the parameters

were needed to specify various internal routines of the model. Because good-quality data

are used to validate in part the MAS model, all data used by GH-LUDAS had to be cali-

brated and/or processed outside the model to adequately represent the reality of the coupled

human-environment system. Methodologies for processing/calibrating/classifying data from

different sources, organizing the household-pixel dataset, and scientific approximation of rel-
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evant data for use are discussed in detail in Chapter 4 and 5.

In contrast to these data, user-defined parameters are intended to be set externally

by the user. These parameters comprise policy-related, demographic, and climate parameters,

which enable the users to set their own options for scenario development. Policy-related op-

tions include the specification of the location and irrigation capacity of dams, and the annual

percentage of households provided with credit, whereby an option is given to choose between

a revolving credit scheme and the current (normal) scheme (see section 3.5.2). Furthermore,

the growth rate and carrying capacity of the population as well as a specific IPCC climate

scenario can be defined.

Ouput of GH-LUDAS

The strength of the NetLogo programming platform, and of GH-LUDAS in particular, is its

provision of a set of very informative outputs. For any time step of the simulation, including

two season-wise simulation steps per annum, three types of output are produced: a spatially

explicit map of land-use and land-cover, graphs, and spreadsheets of predefined indicators.

Land-use and land-cover map

The land-use and land-cover map is depicted in the viewer of the NetLogo platform, and

displays dry- and rainy-season land-use/cover patterns in sequence in order to reflect the real-

world temporal fashion in which land-use/cover changes occur annually. With the help of the

NetLogo functionality ’export-viewer’, values of each pixel of the map can be exported at

any of the two annual time steps in any year of simulation. Exported files of these spatially

explicit maps enable experts to conduct sophisticated interpretations of the simulated land-

use/cover patterns.

Digital images and graphs

A digital map interface was designed to enable the user to navigate among different landscape

attributes by clicking the corresponding buttons. This allows users to visually link changes

in land-use/cover to important landscape attributes such as elevation,slope, distance to river,

village territories, etc. Furthermore, real-time changesin predefined indicators are visualized

in graphs, e.g. average household income, percentages of land-use types within the catch-
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ment, etc. Data underlying these graphs can be exported in text files for each time step during

simulation for further analysis and interpretation.

Predefined indicators

In each time step, indicators predefined by the modeler are exported to text files to serve as

a basis for further analysis of the performance of the system. A wide range of indicators

of households and the landscape are concurrently saved, ranging from average income from

and labor input to all income-generating activities of households, over livelihood-strategy in-

dicators and the Gini Index, to average crop yields of landscape agents, and land-use/cover

performance. Adding or modifying selected indicators is aneasy task if such needs arise on

the side of the user.

6.3.2 Results

The user interface of the model comprise the following components: i) User’s input param-

eters and a navigation bar for landscape attributes (parts (1) and (3) in Figure 6.1). ii) a

real-time map of land use and land cover (part (2) in Figure 6.1), and iii) time-series graphs

of predefined indicators of the coupled human-environment system (parts (4) to (14) in Figure

6.1). In Figures 6.2 to 6.7, the parts of the interface are depicted in detail.

By pressing the top three buttons of the input parameter bar (1), the landscape and

the household agents are initialized, and the simulation ofsequential annual time-loops is

started. Below, parameters of population growth can be set manually by sliders, including

the carrying capacity of the number of households in the catchment, and the annual growth

rate. By pressing the ’draw-dam’ button, dams can be inserted in the viewer by mouse click,

whereby the dam’s irrigation capacity needs to be defined by aslider. Below, the maximum

area a dam user is allowed to cultivate can be set. Below are the credit-related settings, in-

cluding a slider to regulate the annual credit access percentage of the population, a switch to

choose the credit scheme and a regulator to define the timely extent of the revolving credit

scheme if this option is chosen. The next four buttons allow switching among initial land-

use/cover patterns in 2006 and simulated (final) patterns to enable the user to identify sub-

stantial changes visually. The last option allows the choice of rainfall scenarios, including

’No Climate Change’ and the four IPCC rainfall scenarios.
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Figure 6.1: Model interface of GH-LUDAS
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The navigation bar (3) allows the user to map major environmental attributes in the viewer,

including village territories, topography-related variables (e.g. elevation, wetness index),

soil attributes (e.g. texture, fertility), groundwater level and recharge, and proximity-related

variables (e.g. distance to river).

Figure 6.2: Viewer (Part 2) of model interface

The time-series graphs include two major blocks. The first block comprises graphs

of indicators of the performance of the biophysical landscape system (see parts (4) - (6) and
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Figure 6.3: Input parameter bar (Part 1) of
model interface

Figure 6.4: Navigation bar (Part 3) of model
interface

(11) - (14)). Graphs (4) and (5) monitor changes in the coverage of the four main land-cover

types for each season, while graph (6) depicts changes in thecoverage of the six rainy-season

land-use types (LU 1 - LU 6), and the two dry-season land-use types (LU 7 and LU 8). A

legend for these land-use types is attached on the right sideof the interface. While this latter

graph only monitors the percental changes of land-use typesof total cropland area, graphs

(11) and (12) display the actual area of these land-use typesin hectares.

Graphs (13) and (14) finally show the performance over time ofaverage yield in

kg rice/ha and kg tomatoes/ha for rainy-season and dry-season land-use types, respectively.

Based on information of average yield and spatial extent of the single land-use types as mon-

itored by the latter four graphs, the total crop production for the catchment can be easily

calculated for each season.

The second time-series block of graphs comprises the graphsfor monitoring changes
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Figure 6.5: Land-use/cover graphs (Parts 4 - 6) of model interface

in the human system, parallel to the changes in the natural landscape system (see parts (7) -

(10)). Graph (7) shows trends in changes in gross household income for both seasons sep-

arately, and graph (8) displays the equity of household incomes, in terms of Gini Indices of

income distribution for both seasons separately and in combination. Graphs (9) and (10) show

the average income structures in each season, depicting thepercentages of each of the seven

major income-generating activities of total gross household income. These trends allow an

interpretation of changing livelihood strategies.

This user-friendly interface will allow stakeholders to test the combined conse-

quences of selected user-defined parameters on the landscape as well as on the population

level. An interaction loop may develop between the users andthe model, by improving

the knowledge of the effects of interventions and natural and demographic changes on the

192



Scenario assessment of land-use/cover and livelihood changes in the Atankwidi catchment

Figure 6.6: Income-related graphs (Parts 7 - 10) of model interface

Figure 6.7: Land-use-type-related graphs (Parts 11 - 14) ofmodel interface
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coupled human-environment system. Furthermore, the interface of GH-LUDAS may enable

users to develop scenarios that can be used as case studies for further analysis and interpreta-

tion.

6.4 Definition, simulation and analysis of selected scenarios
6.4.1 Methodology

According to the identified range of land-use-related factors and policies (section 6.2), the

specific scenarios to be tested were systematically defined as follows:

1. The policy and global settings as in 2006 are considered the baseline scenario. This

scenario assumes no rainfall or demographic changes and will be used as a baseline for

evaluating the impacts of changes in land-use policies and other factors.

2. Given the baseline settings, each single policy/global factor will be shifted from the

baseline to form a scenario spectrum of the considered factor. Other policy/global

factors are kept the same as in the baseline scenario. Each such scenario spectrum

consists of 2 to 4 single scenarios, which will enable identifying the sensitivity of this

factor to socio-economic indicators and land-use/cover performance.

The different policy scenarios of each scenario spectrum are brieflydescribed below:

Baseline scenario

The baseline scenario (S0) has the policy setting as in 2006,which is the base year of the

simulation. According to statistics from the Ministry of Food and Agriculture (MOFA) in

Navrongo, about 1 % of the households obtained credit every year during that time. As lo-

cal dams were not operational for irrigation in the study area, no dams were inserted within

this scenario. The information about past demographic statistics provided by the Ghanaian

Statistical Service was too limited to serve as a basis to extrapolate future changes in local

demography. Thus, for the baseline, the number of households in the catchment was assumed

to remain stable. The potential consequences of an increasein household population will be

separately analyzed within the demographic scenario. In a similar vein, annual rainfall was
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assumed to be stable in this scenario, at a level of 1100 mm perannum.

Scenarios for assessing the impacts of dam construction

Usually, variations in the location, size and number of constructed dams need to be considered

in the policy of dam construction. However, as it is impractical to test all possible scenarios,

we focused on variations in total available irrigable area.For this, we varied the number of

dams, all having the same irrigation capacity of about 2.1 hectares, which is a reasonable

value for small-scale dams in the Upper East Region. Although we are aware of the fact that

the selection of the dam location underlies hydrological considerations on the side of policy-

makers and contractors, we did not apply such a selection process to identify suitable loca-

tions, but assumed a random distribution of dams throughoutthe catchment. This procedure

is justifiable, as prior simulations had shown that variations in the specific locations of these

dams did not show a significant influence on the socio-economic indicators or land-use/cover

at the level of the population/catchment. Following this mindset, we defined three scenarios,

with a random distribution of 20 dams named the S-Dam20 scenario, of 30 dams (S-Dam30),

and of 40 dams (S-Dam40). All other settings were kept the same as for the baseline scenario.

Scenarios for assessing the impacts of improved credit access

This scenario spectrum consists of different settings of annual credit access, while other pa-

rameter values are identical with those for the baseline scenario. The term annual credit

access denotes the annual percentage of households that obtain credit, whereby the amount

of credit is fixed to 200 000 Ghanaian Cedis (about US $ 20), which is the usual amount

granted to applicants in the study area. To test the sensitivity of output values to increased

ncredit access, three scenarios were defined, a percentage of 4 % (S-Cred4), 7 % (S-Cred7),

and 10 % (S-Cred10). These values express a gradual change incredit coverage by a 3 %

stepwise increase, based on the current value of 1 % in the baseline scenario.

Scenarios for assessing the impact of area limitation underdam construction

This scenario spectrum explores the impact of area limitation under a policy of construction

of 30 dams. The scenarios include an area limitation of 900m2 (S-Lim900), an area lim-

itation of 1800m2 (S-Lim1800), and no limitation (S-LimNo). The latter scenario has the
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Table 6.1: Global-policy settings for scenario development
Quantitative Settings

Dam Construction Credit Access Demography Rainfall Change
Scenario Number Area Annual Carrying Annual. Scenario

of Dams Limitation Credit Capacity Growth
(m2) Access (%) (Households) Rate (%)

Baseline Scenario (with policy settings of 2006)
S0 (Baseline) 0 - 1 % 6400 3 % No Change

Scenarios for exploring the impacts of dam construction
S-Dam20 20 - 1 % 6400 3 % No Change
S-Dam30 30 - 1 % 6400 3 % No Change
S-Dam40 40 - 1 % 6400 3 % No Change

Scenarios for exploring the impacts of area limitation
S-Lim900 30 900m2 1 % 6400 3 % No Change
S-Lim1800 30 1800m2 1 % 6400 3 % No Change
S-LimNo 30 - 1 % 6400 3 % No Change

Scenarios for exploring the impacts of credit access
S-Cred4 0 - 4 % 6400 3 % No Change
S-Cred7 0 - 7 % 6400 3 % No Change
S-Cred10 0 - 10 % 6400 3 % No Change

Scenarios for exploring the impacts of population growth
S-Pop7200 0 - 1 % 7200 3 % No Change
S-Pop8400 0 - 1 % 8400 3 % No Change
S-Pop9600 0 - 1 % 9600 3 % No Change

Scenarios for exploring the impacts of rainfall change
S-ClimA1 0 - 1 % 6400 3 % A1
S-ClimA2 0 - 1 % 6400 3 % A2
S-ClimB1 0 - 1 % 6400 3 % B1
S-ClimB2 0 - 1 % 6400 3 % B2

same settings as S-Dam30, and the former two scenarios only deviate from this base sce-

nario in their value for area limitation. Finer increments in area limitation were not possible,

as the spatial resolution of GH-LUDAS is pixel of 30 m x 30 m, making up an area of 900m2.

Scenarios for assessing the impact of different population carrying capacities

In this scenario spectrum, the impact of increases in population sizes on socio-economic in-

dicators and land use/cover is explored. Local population growth is simulated by the logistic

S-shaped growth function, which is defined by an annual growth rate and a population car-
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rying capacity. In all scenarios, the annual growth rate wasset to 3 %, which is the current

observed value in the study area, while the population carrying capacities were set to totals

of 7200 (Scenario S-Pop7200), 8400 (S-Pop8400), and 9600 households (S-Pop9600).

Scenarios for assessing the impacts of reduced precipitation

This spectrum covers four single rainfall scenarios, basedon the simulation of scenarios de-

veloped by the IPCC Special Report of Emissions Scenarios (SRES), namely the A1, A2,

B1 and B2 storylines (see section 6.2). Data on long-term changes in annual rainfall have

been derived specifically for the study area, ranging from anannual reduction in precipitation

of 2.87 mm (A1), over 2.84 (B1) and 2.48 (B2) to 0.36 mm (A2). The single scenarios for

simulation in GH-LUDAS were named after their original SRESname.

6.4.2 Results

Each scenario was run 5 times for 30 timesteps (years), and mean valuesµ and uncertainty

ranges [µ − CI0.05, µ + CI0.05], whereCI0.05 is the radius of the 95 % uncertainty intervall,

were calculated from the generated data for each scenario. In the subsequent analyses, we

will focus on those indicators that showed a significant change during time and/or showed

a dependency on external (e.g. policy) settings. Changes inland cover and land use in the

rainy season and their dependency on global-policy settings were analyzed, as well as mean

gross household income for each season, and the Gini Index, which describes the skewness of

income distribution among the population. To analyze the behavior of income classes within

the local society a further single-run simulation was carried out to derive behavioral values

for the high-income class, the medium-income class and the low-income class, which are

separated by 0.5· standard deviation of annual gross income. With respect to land cover in

the dry season, no changes in the composition of land-cover types could be observed, mainly

as irrigated cropland in this season had almost reached its maximum spatial extent during

the base year 2006. The same is valid for the choices between the two dry-season land-use

types, where no significant down- or upward trends could be observed for the selected scenar-

ios. Therefore, in the following scenario analyses, the description of indicators of dry-season

land-use and land-cover patterns was omitted. Instead, another important trend regarding

dry-season land-use could be observed, i.e. a change in the number of farmers practicing
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irrigation, and subsequently changes in the average irrigated area per (irrigating) household,

which were also significantly influenced by policy interventions.

Baseline scenario

Before analysing the impacts of selected external factors and policies, the temporal pefor-

mance of the baseline scenario needs to be analyzed in order to understand the general trend

of land-use/cover change and related socio-economic indicators. This baseline will then be

used to compare the performance of the subsequent scenarioswith that of the baseline sce-

nario. In this baseline, the mean gross household income increased both in the dry and the

rainy season (Figure 6.8 a). In total, the increase in mean annual gross household income

increased from 15.9 million Ghanaian Cedis to 16.6± 0.05 million Cedis during the 30-year

period, which was observed to be mainly due to two factors. First, the productivity per land

area was increased in the rainy season, and second, an increasing portion of household la-

bor was dedicated to the more profitable activity of trading in both seasons. In average, the

percentage of income generated by trading acitivities increased from 9.9 % to 14.4± 0.24 %

during the observed period. The higher productivity levelsin the agricultural sector were not

caused by a process of intensification or higher yields, but were a result of a continuing shift

to more profitable crops (or land-use types).

While in 2006, 45.7 % of the land-use types consisted of groundnut- and rice-based

systems, which are regarded as cash crops due to their high marketable value, the portion

of these cash land-use types increased to 52.2± 0.38 % at the end of the 30-year period.

Although this shift to more market-oriented activities (e.g. trading) and crops is the result of

many interacting factors, it can be genereally said that this trend is caused by an alternation

of generations, as the young generation tends to be more cash-oriented and aims at reaching a

higher labor efficiency in terms of a labor-income relation. This observation also matches the

impression in the field, where both old and young farmers wereinformally interviewed about

their individual income strategy and land-use tendencies.Another factor observed during the

field study was the reluctance of many young farmers to engagein hard agricultural work, as

many of them preferred other less labor-intensive strategies such as seasonal migration. This

observation matches the decline in total agricultural areain the rainy season (Figure 6.8 c),

which decreased from 61.5 % of the total area in 2006 to 55.5± 0.76 % in 2036. This decline
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Figure 6.8: Baseline scenario: Simulated land-use/cover and socio-economic changes.
Source: Simulation results with GH-LUDAS
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is supported by the fact that the household labor pool dedicated to agriculture was up to 10

% lower among the younger generation.

Although these processes lead to a general increase in average income, the equity in

income distribution among the population, described by theGini Index, seems to deteriorate

(see Figure 6.8 b). During the observed period, the annual gross income of the wealthier part

of the population (with income> mean income+ 0.5σ, whereσ is the standard deviation)

increased by 34 %, while that of the poorer part (with income< mean income - 0.5σ )

decreased by 36 %. We found that this increasing differentiation of gross income is partly due

to an increasing inequity in land availability. This process is due to the fact that households

falling into the lower-income class usually have many more offspring that those of the high-

income class, which leads to the partitionment among many inheritents of land that is already

small in size. Among high-income households, the situationis inverse. Household land is

usually extensive, and its division usually does not lead toland shortages among the already

few inheritants.

With respect to dry-season land use, the baseline scenario shows a decrease in the

proportion of irrigation farmers of total population from 29.3 % in 2006 to 16.3± 0.11 %

in 2036 (Figure 6.8 f). This implies that the limited irrigable area is being divided by a con-

tinuously decreasing number of farmers, which is also reflected by an increase in average

irrigated area per farming household. The reason behind this process is the increasing use

of pump irrigation technology, which allows the irrigationof larger areas, in comparison to

the use of wells (bucket irrigation), where water has to be manually distributed. Within the

16-year old history of irrigation farming in the study area,farmers started with buckets, but

in 2006, 40 % of the area was already irrigated by pump technology, which will, according

to the scenario, increase to nearly 95± 0.14 % in 30 years.

Impacts of the policy of dam construction on land-use/cover and socio-economic status

In this scenario spectrum, the sensitivity of a dam construction policy on land-use/cover and

socio-economic indicators is tested. For the dry season, average gross household income

is highly sensitive to the number of constructed dams (Figure 6.9), resulting in a simulated

average dry-season income of 5.72± 0.04 million Ghanaian Cedis in 2036 for S-Dam40,

as compared to 4.74± 0.03 million Cedis for the baseline scenario. The additional income
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generated in the dry season is due to a clear shift from non-agricultural activities to irrigation

farming. The analysis of simulation results reveals that inthe baseline scenario only 32± 0.42

% of the income is generated by cultivation in the dry season,whereas in S-Dam40 this value

amounts to 46.1± 0.14 %. This additional income does not seem to be reinvestedin non-farm

activities such as trading or arts/crafts, but merely in an extension of cultivation activities,

especially in the dry season. Although there is a general upward trend in the involvement in

such income-generating non-farm activities, the increased practice of irrigation farming does

not seem to have a positive influence on this trend. Furthermore, additional income generated

by irrigation farming does not seem to be invested in cash cropping during the rainy season

either, as the cropping pattern is not sensitive to changes in dam numbers (Figure 6.9 e) and

the uncertainty ranges overlap: According to the simulations, in 2036 about 52.6± 0.33

% of the cropland is used for cash crops for S-Dam40, while thefigure is similar for the

baseline, being 52.2± 0.38 %. This low effect might be due to the fact that households

practicing irrigation farming usually reinvest their profit into this business, as this activity is

usually more profitable than non-farm businesses such as trading or cultivation of cash crops.

This behavior is in accordance with field interviews, which reveal that profit from irrigation

farming is partly reinvested in irrigation, and partly usedto get over the lean season. For

the same reason, there does not seem to be any positive influence on income generated in

the rainy season (Figure 6.9 a), which in 2036 amounts to 11.8± 0.196 million Cedis for

S-Dam40, and 11.9± 0.175 million Cedis for the baseline scenario.

The Gini Index describing the equity level of income distribution is partly posi-

tively influenced by the policy of dam construction. While atthe end of the first half of the

simulation period the Gini Index is lower for S-Dam40 (0.486± 0.004) than for the base-

line scenario (0.5± 0.004), the values seem to converge at the end of the simulation period

(Figure 6.9 c). The single-run simulation to assess the local society structure reveals that

for S-Dam40, the average simulated income for the low-income class (with income< mean

income - 0.5σ, whereσ is the standard deviation) decreases during the simulationperiod

by only by 25 % as compared to 34 % in the baseline scenario, while for the middle class,

this value is 9 %, as compared to 14 % in the baseline. In other words, the process, which

is leading to an increasingly skewed income distribution, can be slightly dampened by this

policy intervention. Although it is difficult to identify the reasons for this improvement in
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Figure 6.9: Dam construction scenarios: Simulated land-use/cover and socio-economic
changes (see Tables A.1 to A.6 for means and uncertainty ranges)
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income equity due to the model’s complexity, two factors seem to play a major role. First, the

availability of operational dams has a much higher impact onthe share of irrigation farmers

in the poorer class than that of the better-off class. Although the involvement of the poorer

class in irrigation practices is generally low, the supply with irrigation infrastructure resulted

in a 10-fold increase of the percentage of irrigation farmers among this group from 0.5 % to

5 %. The middle class experienced a 2-fold increase (from 15.5 % to 32 %), while the share

of irrigation farmers among the better-off class increased only slightly. This extreme bias is

caused by the fact that i) dam irrigation is generally a low-cost business that allows it to be

practiced among low-income farmers, and ii) the majority ofbetter-off farmers who share the

interest in this business is already practicing it. Second,possible reason for an improvement

in the income equity can be found in the correlation between irrigated land and rainfed land

available to the households. The increasing involvement inthe irrigation business, especially

among lower and middle class farmers, seems to have an effect on their share of cultivated

land in the rainy season. The increasing bias in land availability among the population as de-

scribed in the baseline scenario is alleviated by the improved ability of the lower and middle

class to rent additional land in the rainy season due to an improved financial situation. This

trend of a higher tendency for rainy-season cultivation might also be reflected in the increased

portion of cropland for the S-Dam40 scenario (Figure 6.9 d).In 2036, for the baseline sce-

nario the percentage of cropland amounts to 55.86± 0.76 % while the value for S-Dam40 is

56.81± 1.02 %. Although the percentage of cropland seems to be slightly sensitive to the

policy of dam construction, the significance is low, as the uncertainty ranges of these two

scenarios overlap.

Furthermore, the policy of providing irrigation infrastructure in the form of dams

can stabilize the declining trend of the share of irrigationfarmers of the total population (Fig-

ure 6.9 f). In the baseline scenario, the percentage of irrigation farmers decreases from 29 %

to 16± 0.1 % during the simulation period, in comparison to the value for S-Dam40, which

is 27.6± 0.7 % in the final year 2036. The effect of dam construction on the percentage of

irrigation farmers is significant for all four scenarios, having an average uncertainty range of

± 0.55 %. While the baseline results in larger average areas distributed among a declining

number of households, this effect is clearly alleviated in the dam-based scenarios. Although

irrigation farmers used to have larger cultivated areas in the beginning due to increased land
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availability, the upward trend is not as pronounced as in thebaseline scenario. This might

be due to the fact that in comparison to the baseline, a smaller portion of farmers has the

financial capacity to expand their irrigation business, as there is a relatively high involvement

of low-income and middle class farmers.

Impacts of area limitation under the policy of dam construction on land use/cover and

socio-economic status

In this range of scenarios, the policy of area limitation is tested on land-use and livelihood

performance. This limitation area, which is set to 900m2, 1800m2 and unlimited size, refers

to the maximum area a household is allowed to irrigate in the drainage areas of local dams.

The target of this secnario spectrum is to assess whether such a policy would increase the

equity in income, due to an increased equity in irrigable land among local households. The

Gini Index, however, gives a complex picture of this intended effect. While the Gini Index

is lowest for the S-Limit900 scenario (Figure 6.10 c), whichis expected to be due to an

equal distribution of 900m2 land per household, the Gini Index for a limitation of 1800m2

seems to exceed that of the scenario of no area limitation. in2036, the Gini Index for S-

Limit1800 is 0.5± 0.008, while that for S-LimitNo is 0.491± 0.008 and for S-Limit900

this value is 4.87± 0.004. The uncertainty range of S-LimitNo overlaps with those of the

other two scenarios, while S-Limit900 and S-Limit1800 havedistinct uncertainty ranges.

Therefore, we will only attempt to analyze the causes behindthis latter diffference. However,

as the system modeled is very complex, and a reliable analysis of this behavior is beyond our

analytical capacities, we can only analyze the causes of this complex behavior to a limited

extent. The assumption we can give is that land that is made available in the S-Limit1800

scenario seems to be mainly occupied by the high-income class. Two processes related to

the difference in the Gini Index between S-Limit900 and S-Limit1800were identified. First,

the single-rune simulation shows that in 2036 the percentage of farmers belonging to the

middle class is highest with 65 % for the S-Limit900 scenario, while it is lowest with 59

% for the S-Limit1800 scenario. Accordingly, the percentages of the lower and high-income

classes are higher for the latter scenario, leading to an increased income gap and thus a higher

Gini Index. Second, average incomes within these classes change to the disadvantage of the

lower and middle income class. This process is worsened in the S-Limit1800 scenario as
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compared to the S-Limit900 scenario. Furthermore, there isan evident relationship between

this difference in income and the difference in the allocation of irrigable (dam) areas. While

the upper class claims only 28.5 % of the irrigable (dam) areain the S-Limit900 scenario, this

value amounts to 32 % in the S-Limit1800 scenario, to the disadvantage of the middle class.

This process seems to be in accordance with our assumption that mainly better-off farmers

benfit from the implementation of an area limitation of 1800m2.

With respect to average income, the policy of area limitation does not seem to have a

significant influence. Average gross income generated in thedry season in 2036 is highest for

S-Limit900 (5.5± 0.047 million) while it is lowest for S-Limit1800 (5.42± 0.053 million).

This dfifference, although not significant, might be caused by the factthat a higher fraction

of households is involved in irrigation (30.5± 0.62 %), compared to 25 % in the other two

scenarios). In the rainy season, households seem to compensate for their lower dry-season

income in the S-Limit1800 scenario by investing in cash crops and an extension of rainfed

area (see Figures 6.10 d and 6.10 e). In 2036 for S-Limit1800 55.7± 0.3 % of land is crop-

land, of which 53.1± 0.7 % is cultivated with cash crops, while for S-LimitNo thisfigures

are lower, i.e. 54.8± 0.6 % of land is cropland, and out of these 52.1± 1.0 % are cultivated

with cash crops. For 2036, this difference in household behavior results in a slightly higher

rainy-season income for the S-Limit1800 scenario (12.0± 0.157 million Cedis), as compared

to the S-NoLimit scenario (11.8± 0.256 million) (Figure 6.10 a). To summarize, a signifi-

cant difference in income equity (Gini Index) can be induced by this policy, whereby effects

on land use and average income are minimal and cannot be verified due to large uncertainty

ranges. Possible further simulations could help to reduce this level of uncertainty.

Impacts of the policy of credit access on land-use/cover and socio-economic status

According to local data and interviews conducted in the study area, most given credits are

invested in trading activities, which is the most profitablebusiness apart from irrigation farm-

ing. Credits are usually given to women, and as trading is mainly a women’s domain in

contrast to the male domain of irrigation farming, women tend to start or expand their trading

businesses. Since trading can be practiced throughout the year, additional income is gener-

ated in both seasons (see Figures 6.11 a and 6.11 b). For the year 2036, average rainy-season

gross income amounted to 11.9± 0.176 million Ghanaian Cedis for the baseline scenario,

205



Scenario assessment of land-use/cover and livelihood changes in the Atankwidi catchment

Figure 6.10: Area limitation scenarios: Simulated land-use/cover and socio-economic
changes (see Tables A.7 to A.12 for means and uncertainty ranges)
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while for the S-Cred10 scenario this amount reached astonishing 19.6± 0.383 million Cedis.

In the dry season, the situation is similar, but less pronounced (Figure 6.11 b). The S-Cred10

scenario led to an average gross dry-season income of 4.7± 0.003 million Cedis in 2036, in

contrast to 6.1± 0.08 million in the baseline scenario. The uncertainty ranges for all four

scenarios were distinct for both seasons.

The most remarkable point here is that income seems to be muchmore sensitive to

the policy of credit access than to that of dam construction,as described above. Credit access,

as the much cheaper policy intervention compared to the establishment of dam infrastructure,

seems to have a much higher impact on income generation. An annual credit access percent-

age of 10 % would result in a maximum total annual expenditureof US $ 12.800, under the

assumption that none of the credits are settled, which is an unrealistic assumption in an area

where nearly 95 % of the credits are repaid. The constructionof dams on the other hand

would cost millions of US $, which poses the question whethersuch a policy is cost-effective

and efficient enough to be justifiable. However, from the viewpoint of income equity, dam

construction might be regarded as the more desirable intervention in terms of the equity in

income distribution, as represented by the Gini Index. Improvements in credit access in the

study area have the unfavorable characteristic of leading to higher income inequity (Figure

6.11 c). For 2036, the Gini Index in the baseline scenario amounts 0.495± 0.008 as compared

to 0.513± 0.003 for S-Cred10. This increased inequity is reflected by an increased income

gap between low-income and high-income farmers. The single-run simulation showed that

in the S-Cred10 scenario the high-income class was able to more than double their average

annual gross income during the simulation period, while thelow-income class could increase

their income by only 3 %. This skewed pattern may be caused by the increased ability of

the high-income class to invest in highly profitable activities (e.g. irrigation, trading), com-

pared to the lower class, which is usually not involved in these businesses and often reliant

on low-profit activities (e.g. arts/crafts).

In the long term, correlations among income generated by non-farm activities and

agriculture suggest that profit made from investments in these activities is reinvested not only

in the same activities, but also in irrigation farming and cash cropping. While in 2036 for

the baseline the percentage of land cultivated with cash crops in the rainy season amounted

to 52.2± 0.38 %, the S-Cred10 scenario resulted in a significantly higher percentage (56.9
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Figure 6.11: Credit access scenarios: Simulated land-use/cover and socio-economic changes
(see Tables A.13 to A.18 for means and uncertainty ranges)
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± 0.99 %) (Figure 6.11 e). A significant change in cropland was not observed (Figure 6.11

d), as the difference between the baseline scenario and S-Cred10 is low (0.6 %) and the un-

certainty ranges overlap. The reason might be that increased credit access only seems to give

an incentive to modify the cropping pattern, but not to extend farmland in general. Further-

more, the improved financial situation of local households generated by cash cropping and

non-farm activities seems to be an incentive with respect toinvolvement in irrigation farming.

The decreasing trend in the number of irrigation farmers is significantly alleviated by credit

access improvement (Figure 6.11 f), as in 2036 16.3± 0.11 % of households are engaged in

irrigation farming, while the value is as much as 19.5± 0.72 for S-Cred10. This difference is

due to the fact that many farmers now can afford going into this business. These farmers usu-

ally prefer the low-cost alternative bucket irrigation, which is also reflected by corresponding

data of irrigation technology use. In the S-Cred10 scenario, 48.2± 0.03 % of the irrigated

area is still irrigated by buckets in 2036, while the value for the baseline is only 5± 0.01 %.

This process of the involvement of irrigation newcomers also reduces the effect of increasing

average irrigated area, as the proportion of bucket irrigation, which allows the cultivation of

only small areas, is higher than in the baseline.

Impacts of rainfall change on land-use/cover and socio-economic status

In this family of scenarios, the effect of changes in rainfall is tested on system performance,

where the annual changes in rainfall represent the four IPCCSRES scenarios, A1, A2, B1,

and B2. A2 is the scenario with the least reduction in annual rainfall, followed by B2, A1

and A2 in this order. From the results (Figure 6.12), it is evident that the system performance

changes between the B2 and A1 scenarios (e.g. Figure 6.12 a and Figure 6.14), although

their annual rainfall reduction values are close. The results, although not significant in terms

of uncertainty range overlap, suggest that a slight change can trigger a readjustment of the

system’s functioning. In the following, we will analyze thedata behind this sudden system

change between the B2 and the A1 scenario.

What is remarkable is the fact that average income from cultivation is lowest for

B2 and highest for A1, although reduction in average annual rainfall is similar, i.e. 2.87 mm

for A1 and 2.48 mm for B2. That is, the difference in annual reduction is only 0.39 mm,

amounting to only 12 mm difference after 30 years, which is the simulation period. However,
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Figure 6.12: Rainfall change scenarios: Simulated land-use/cover and socio-economic
changes (see Tables A.19 to A.24 for means and uncertainty ranges)
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it seems that this small reduction triggers a changed systembehavior. Although this change

of system behavior can be hardly analyzed due to its complexity, at least the general causes

for this increased cultivation-based income can be stated.In general, increased income from

cultivation is due to i) higher yields, ii) the cultivation of more valuable crops, or iii) and

extension of cropped area, or a combination of these. As yields are even lower for the A1

than for the B2 scenario (e.g. Figure 6.13), the income surplus must be caused by a shift to

more valuable crops or an enlarged cropping area. Although not significant, results suggest

that both mechanisms seem to be activated in the A1 scenario.In 2036, the percentage of

cropland cultivated with cash crops is 52.7± 1.2 % for A1, while the value is only 52.0±
0.6 % for B2. Accordingly, the percentage of cropland is larger in the A1 scenario with 55.8

± 0.93, as compared to 54.9± 0.92 % in the B2 scenario. This tendency might also be one

of the causes for the slighlty higher average income during the rainy season, which is 12.0±
0.296 million Cedis for A1, as compared to 11.7± 0.195 million Cedis for B2 (Figure 6.12

a). As far as income equity is concerned, a slight difference in Gini Index in 2036 can be

observed between the A1 scenario (0.5± 0.008) and the B2 scenario (0.494± 0.004) (Figure

6.12 c). The single-run simulation revealed that the higherGini Index for the A1 scenario is

caused by a thinning of the middle class, resulting in largerfractions of high- and low-income

farmers. The more subtle reasons for this mechanism could not be revealed due to the high

model complexity. Irrigation activities did not seem to be affected by decreases in rainfall

(e.g. Figure 6.12 f).

Impacts of population growth on land-use/cover and socio-economic status

In this scenario spectrum, the impact of different population carrying capacities on land-

use/cover and socio-economic indicators is explored. As visualized in Figures 6.15 a and

6.15 b, higher numbers of total households seem to have a negative influence on average

household income, in the dry as well as in the rainy season. Inthe S-Pop9600 scenario,

average rainy-season income amounts to 10.0± 0.258 million Ghanaian Cedis in 2036, while

the value for the baseline scenario is higher (11.9± 0.176 million Cedis). The situation in the

dry season is similar, with a seasonal average gross income of only 3.83± 0.026 million Cedis

for S-Pop9600 in 2036, as compared to 4.74± 0.03 million Cedis for the baseline scenario.

In both seasons, this declining trend is mainly related to a decline in average cultivated area,
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Figure 6.13: Average yield from the
compound farming system

Figure 6.14: Average gross income from
rainfed cultivation

as cultivation is by far the most important contributor to household income. For the whole

simulation period, the percentage of rainy-season income generated by cultivation reached as

much as 77.5 and never fell below 70 %.

Average cultivated area in the rainy season showed a declinefrom 15400m2 in

2006 to 10 400± 89 m2 in 2036 in the S-Pop9600 scenario, whereas in the baseline scenario

this amount is only reduced to 13 900± 188m2 in 2036. Given a similar situation in the dry

season, in both seasons limited available land was identified to be the main cause of this trend.

While in the dry season most of the irrigable land had alreadybeen put under cultivation

before 2006, arable land in the rainy season still seemed to be available, but remoteness and

large distances were supposed to impede their cultivation.

Results also suggest a higher trend of the Gini Index for the population-based sce-

narios in comparison to the baseline (Figure 6.15 c), being 0.495± 0.008 for the baseline and

0.5± 0.012 for S-Pop9600, although the difference between these two values is not significant

due to overlapping uncertainty ranges. However, this trendis underpinned by the single-run

society composition analysis among the three income classes as defined above. While in the

S-Pop9600 scenario, average annual income of the high-income class experienced an increase

of 16.4 % during the simulation period, the values for the middle- and lower-income class

were negative. The reason for this inequity can be traced back to the increasing bias in land

tenure between the low- and high-income class for the population-based scenarios. While the
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Figure 6.15: Population growth scenarios: Simulated land-use/cover and socio-economic
changes (see Tables A.25 to A.30 for means and uncertainty ranges)
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rainfed cultivated area among high-income households remained stable in the simulation pe-

riod, the area for households from the low-income class decreased dramatically. This extreme

bias might be caused by the same mechanism as described in thedescription of the baseline

scenario above. Farmers at the lower end of the income gap usually have more offspring

and much less land than those at the upper end, which results in a severe fragmentation of

land in this lower class, whereas the relatively abundant land of better-off farmers is usually

divided among a few number of inheritants. Increasing population numbers thus amplify this

mechanism.

Due to this lack of available land, the scenario spectrum showed that local house-

holds found strategies to reduce their dependency on cultivation, especially among house-

holds of the lower class. Cash cropping did not seem to be an alternative (Figure 6.15 e) as

the difference of % land cultivated by cash crops did not vary significantly among the sce-

narios (i.e. 52.2± 0.38 % for the baseline scenario and 52.6± 0.94 % for S-Pop9600). The

lack of incentives to invest in cash cropping might be causedby the low level of land avail-

ability and the fact that many households remain partly reliant on subsistence crops, leaving

little land for cash cropping. As far as the trend of croplandin the S-Pop9600 scenario is

concerned, the general decreasing trend in rainfed area in the baseline scenario is overlain

by an upward trend in the population-based scenarios, caused by the increasing population

size (Figure 6.15 d). For all four scenarios the results are significant in the sense that their

uncertainty ranges are distinct.

According to the population-based scenarios, increased population numbers auto-

matically led to a significantly lower fraction of irrigation farmers (Figure 6.15 f), being 11.4

± 0.31 % for S-Pop9600, while being 16.3± 0.09 % for the baseline. This difference is

mainly due to the fact that the irrigable area, which had already been almost fully reclaimed

in 2006, can only sustain a limited number of households. Thesingle-run society composi-

tion analysis for the S-Pop9600 scenario showed an extreme shift of these households to the

high-income class during the simulation period, which finally cultivated 55 % of the irrigated

area, but only accounting for 13 % of the population. The concentration of the irrigation

business in the upper class caused by the increasing income gap also led to an accelerated

spread of pump irrigation technology, as the percentage of newcomers from the lower classes

remained low.
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7 SUMMARY AND CONCLUSIONS

7.1 Summary

Land-use and land-cover change (LUCC) is a world-wide phenomenon, with one third to one

half of the terrestrial surface already transformed by human actions (Vitousek et al., 1997).

LUCC is further an integral part of global and local webs of environmental processes, be-

ing related to processes such as the hydrological cycle, climate change, land degradation and

biodiversity loss. These processes may result in changes inglobal and local land and water

resources, having immediate consequences for farming households who directly depend on

the natural resource base. This interplay between human actions and the natural resource

base is a vulnerable system, which is why a proactive insteadof a reactive land management

approach is needed to avoid damage to the ecosystem in advance. The understanding and

anticipation of future land-use and land-cover change can provide a basis for such proactive

land management, by trying to find strategies to mitigate future adverse impacts and possibly

improve the sustainability of resource use. However, studies on LUCC processes are often

challenged by their complex nature and unexpected behaviorof both human and environ-

mental drivers. The aim of this study is therefore to developan integrated local model for a

small-scale catchment in Upper East Ghana that enables policy-makers and other stakehold-

ers to explore alternative scenarios that can improve rurallivelihoods and their interplay with

the environment.

The first chapter of this thesis generally clarifies how the agent-based modeling ap-

proach can be a useful tool to capture the complexity of LUCC processes, and why we used

this approach for our purposes. First, the terminology of land-use and land-cover change pro-

cesses is introduced, followed by an outline of typical LUCCprocesses (e.g. deforestation).

The description of these processes give a first insight into the complex nature of LUCC pro-

cesses, which is then further analyzed in detail, includingthe problem of scale dependencies,

socio-ecological heterogeneity, interdependencies among system components, and emergent

properties. The analysis shows that the complex nature of the coupled human-environment

system poses great methodological challenges for LUCC modeling. To analyze the capability

of current LUCC modeling approaches to capture this complexity, the most common model-

ing traditions are described, including a detailed analysis of their ability to represent different
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aspects of the complex behavior of LUCC systems. Based on this analysis and our aim to

develop a small-scale decision support tool, it is finally argued that the agent-based modeling

approach is the most suitable approach for our purposes.

The next chapter is dedicated to the conceptualization of the agent-based model,

named GH-LUDAS (GHana - Land Use DynAmic Simulator), which will serve as a basis

to project alternative pathways of LUCC into the future. First, the concepts underlying the

multi-agent based approach are clarified in order to understand the further steps of model con-

ceptualization and model implementation. Agent-based modeling in general aims at describ-

ing systems as being composed of an environment and agents located in this environment,

which are endowed with automous reactive behavior templates and relations among each

other. Based on this multi-agent philosphy, the conceptualframework for simulating LUCC

is proposed, in which the human population and the landscapeenvironment are represented

as self-organized interactive components. The biophysical system is considered at the level

of landscape agents, i.e. heterogeneous land patches with their own attributes and ecological

response mechanisms with respect to environmental changesand human interventions. The

human system is considered in terms of household agents, i.e. heterogeneous farm house-

holds with their own characteristics and decision-making mechanisms regarding land use.

Interactions between household and landscape agents occurmainly through tenure relations

and a perception-response loop. The perception-response loop involves information flows be-

tween households and patches. The information flowing from household to landscape agent

reflects the decisions made by the household regarding land-use on the patch (e.g. labor in-

put, land-use type, etc.). The information flowing from patch to household includes changes

in the biophysical state (e.g. land use, land cover) and the benefits the household derives from

its decisions (e.g. yield). These changes and benefits are regulated by the internal ecological

response mechanisms of the single patches. Apart from the human and environmental com-

ponents of the system, a third component is integrated, consisting of the external parameters

regulating policy options and other macro-drivers, which directly influence system behavior

through modifying household and/or patch attributes.

In Chapter 3, the theoretical specification of GH-LUDAS is outlined in detail, on

the basis of the general conceptual framework previously defined. For this purpose, the GH-

LUDAS framework is divided into four main modules that represent the main components of
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the coupled human-environment, i.e. the Human, the Decision-making, the Landscape, and

the Global-policy Module. The Human Module defines specific behavioral parameters and

patterns of farm households (i.e. human agents) in land-usedecision-making according to ty-

pological livelihood groups. The Landscape Module characterizes individual land patches (i.e

landscape agents) with multiple attributes and biophysical/natural processes representing the

dynamics of crop yield, livestock and land-use/cover transitions. The Global-policy Module

consists of the architecture describing how policy and other external parameters are integrated

in the Human/Landscape Modules. Finally, the Decision Module, althoughan integral part

of the Human Module, is discussed separately, due to its complicated architecture, which

integrates household and environmental information into land-use decisions. This chapter

provides a transparent model description, such that the internal mechanisms can be easily

retraced. The speciÞcations of the model thus focused on the system architecture, describing

the set of variables for each module and their interlinkages, and the system implementation,

including an outline of the simulation protocol for this architecture.

The fourth chapter is dedicated to the specification and calibration of the decision-

making sub-models. The choice of variables used for these sub-models needed to be based

on field experience, mental models to avoid biases in variable selection, and literature de-

scribing typical variable-process relationships. To support the justification of the range of

variables used, a detailed description of local living conditions and agricultural behavior is

given. Based on this information and the livelihood framework proposed by Ashley and

Carney (1999), meaningful indicators describing the differences in typical local livelihood

typologies are identified. It is a common assumption that land-use decisions are related to

the livelihood strategy of a farming household, thus the diversity of agents regarding land-use

decisions can be achieved by a categorization of these agents into groups, each having an

individual livelihood strategy. This categorization was carried out in two sequential steps,

starting with a Principal Component Analysis (PCA) to condense the range of selected liveli-

hood indicators into a smaller set of ’core variables’, and,based on this core set, a k-mean

Cluster Analysis (k-CA) was applied to derive categorical household groups.

The decision-making sub-models represent choices among discrete sets of options

(e.g. choice among land-use types, choice of irrigation technology), consisting of multi-

nomial logistic regression models, based on selected household and landscape attributes.
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The coefficients for these models were calculated for each household group separately using

statistical methods. The differences in coefficients represent the preferences of a particular

group towards certain options of choice, thereby reflectingits general livelihood strategy. The

multinomial logistic regression models were implemented in GH-LUDAS by using selected

household and landscape variables and the group-wise preference coefficients, to calculate

probabilities for each land-use choice option for each household. Furthermore, a routine

was programmed to reallocate households to specific household groups in each time step,

based on the livelihood indicators as previously specified.As the values of these indicators

among households can change during time, this routine enables households to change into

that group that best represents their livelihood strategy,thus changing their general land-

use preferences. The methods used for this household decision-making study could capture

considerable heterogeneities in land-use choice behavior, and rigorously parameterized these

heterogeneities. In general, households choose land use based on the considerations of a

range of personal characteristics, natural conditions of the environment, and particular pol-

icy factors. The developed model of land-use choice thus provides a basis for coupling the

human and the environment system under particular policy circumstances when simulating

land-use changes.

In Chapter 5, we present the calculated and derived spatial attributes of the study

area, and the specified and calibrated ecological sub-models. Following a detailed description

of natural and biophysical conditions of the landscape, we calibrated the heterogeneous land-

scape environment using GIS-based analysis and digitized maps. Because the path-dependent

nature of land-use/cover changes requires careful and accurate calibration ofland use/cover,

current land-use/cover data were extracted from fine-resolution satellite images (ASTER),

based on ground-truth points collected in the study area. Each landscpae agent was subse-

quently assigned a land-use/cover type based on the extracted map, representing the state in

the base year 2006. Other environmental features were derived from existing databases and

digitized maps such as topography, soil classes, groundwater level, and proximity variables

(e.g. distance to river). All attributes were assumed to remain static over time, although

a subset of them could possibly be subjected to long-term changes, such as soil attributes

and groundwater level. However, due to a lack of reliable local data, it was not possible to

integrate such processes in GH-LUDAS.
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Furthermore, we developed ecological models that were built into the landscape agents to en-

able them to respond to environmental changes and human interventions. Empirical/statistical

sub-models were developed and calibrated to calculate productivity levels of landscape agents.

These yield functions work in response to agricultural input (e.g. labor, fertilizer), regulated

by the decision-making procedure of the household agent, tobiophysical attributes of the

landscape agent (e.g. soil fertility), and to long-term changes in rainfall. These changes

in rainfall are also integrated in the second type of ecological sub-model, i.e. the livestock

dynamics sub-model. Based on a model developed by Stéphenneand Lambin (2001), the re-

lationship between livestock population and biomass production under different rainfall pat-

terns was established. Within this model, the calculation of biomass productivity is directly

related to annual rainfall, which regulates the total population of livestock in the catchment

in terms of tropical livestock units (TLU). This way, households are subjected to annual fluc-

tuations in terms of their livestock assets, which have indirect conseqeunces on their liveli-

hood stratgey and land-use behavior. Finally, a land-covertransition model was developed

to regulate the balance between grassland and cropland. Once cropland is abandonded, it

is converted to grassland after a certain period of time, which was set empirically. These

sub-models, which calculate crop productivity, livestockdynamics and land-cover changes,

are directly linked to the Human Module, as their results areperceived by single household

agents and integrated in their decision-making routines. The interaction between decision-

making and ecological reponse thus leads to an annual time-loop, which has the ability to

change dynamically over time.

Summarizing, by building and calibrating sub-models for household and landscape

agents, we represent the human-environment in a dynamic, adaptive and realistic manner.

By defining the attributes and reactive behavior of the single entities of the coupled human-

environment system of LUCC, the temporal and spatial pattern of land-use/cover change

emerges from the dynamics of the interplay of the single entities. Thus, this approach does

not seek to impose the nature of complexity at the top level ofthe system, but rather tries to

let complexity emerge from the interactions of low-level entities and components. Therefore,

the calibration and parameterization of agents and their reactive behavior needed to be ad-

dressed with utmost care. The range of variables and the range of most important processes

involved were identified and analyzed on the basis of field experience, statistical methods
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and related literature. Household agents and landscape agents were parameterized based on

data collected in 2006 in the study area, with the aim of representing human behavior and

environmental response as realistically as possible.

The model framework (Chapters 3 to 5), was finally programmedin NetLogo, a

multi-agent modeling platform, to produce the operationalGH-LUDAS with functionalities

of a decision support tool. The setting of external parameters allows the simulation of alter-

native pathways into the future, comprising parameters fordam construction, credit access,

climate change, and changes in demography. While parameters of the policy-related factors

of credit access and dam construction directly modify household and landscape attributes,

climate change regulates the productivity of crop and biomass, thus influencing land-use be-

havior indirectly. Characteristics of population growth can be set by the user to define the

dynamics of the number of households during time, which haveindirect consequences on

land and water availability for single households, triggered by increased population pressure

on these resources. Through case-specific settings of theseexternal parameters, future scenar-

ios of land-use/cover change can be explored. Simulation outputs include a spatially explicit

map of land use/cover for the catchment, graphs indicating the temporal performance of land

use/cover and living standards on catchment level (e.g. averageincome, Gini Index), and

spreadsheets of selected indicators of system performance, which can be exported to other

data processing sofwares. This way, the results of selectedscenarios can be compared and

analyzed.

The identification, simulation and analysis of selected scenarios was thus the main

focus of Chapter 6, as well as a presentation of GH-LUDAS as a decision support tool. The

realtively easy handling of the model interface allows stakeholders to use GH-LUDAS as a

simulation tool and a platform for communication among involved stakeholders, who do not

necessarily need to understand the model code. Furthermore, integrated scenarios were de-

veloped for different (policy) options, with the purpose of identifying therange of possible

future pathways triggered by policy and other external factors (policy-related purpose), and

of identifying the main mechansims leading to these specificpathways of livelihood and land

use (scientific purpose). First, we analyzed the environmental and policy-related conditions in

the study area, and justified the selection of the range of external parameters of GH-LUDAS.

With the support of this analysis and GH-LUDAS, we conductedthe scenario development in
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a systematic and organized manner. First, we defined a baseline scenario, reflecting the pol-

icy settings as they were in 2006, and assumed no changes in climate or demography. This

baseline scenario was then used to compare the pathways of other hypothetical scenarios with

that of the baseline. For this, each external factor was shifted from the baseline gradually to

form a scenario spectrum to assess the impact of the change inthis single factor. Among

others, simulation results suggest that the policy of dam construction was much less effec-

tive with respect to average annual income than that of credit provision, although it was the

much more costly option in comparison to a credit scheme. Furthermore, a decline in annual

rainfall seemed to trigger a shift towards cash cropping andnon-farm activities, which could

compensate for the losses in harvest caused by decreased precipitation.

7.2 Limitations

This first version of GH-LUDAS certainly has limitations. First, social interaction among

household agents has been implemented only to a limited extent. Although neighborhood

effects in the dissemination of knowledge about irrigation technology are included, other

social processes are ignored, such as conflict, negotiationand competition. Competition for

land resources has only been implemented indirectly through land tenure and lending, and

not through direct negotiation among involved households.Such direct household-household

interactions were not included, as they would require the modeling of social networks. In the

study area, family networks and village affiliation play an important role in the interaction

among households with respect to granting usufructuary rights on land or denying them (cases

of conflict). Both cases were observed in the study area. However, the identification of

realistic social networks as well as the quantification of the more qualitative benefits farmers

gain from network membership is an almost impossible task. Furthermore, the networking

of household agents would have meant a tremendous reductionof the computation speed of

GH-LUDAS.

Second, the model cannot be transferred to other areas easily. Even within similar

areas, the range of land-use and land-cover types could be different, and the decision-making

and ecological sub-models needed to be area-specific. Only the basic framework of GH-

LUDAS could be reused, but the range of variables and the calibration of the sub-models

should undergo a detailed assessment. An accurate mapping of attributes of the biophysical
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landscape as well as a detailed household survey would be required, as the variables and

architecture of GH-LUDAS remain rather case-specific.

The third drawback of GH-LUDAS is the assumption of static market prices. Mar-

ket prices for all crops and livestock species were derived from data collected in 2006, which

remain identical during the entire simulation period. However, market prices surely undergo

long-term changes, due to changing global, regional and local demand-supply relations. The

modeling of these processes thus would require the use and integration of global and local

economic models with respect to the local goods of the study area. This integration of eco-

nomic models as well as the development of local models wouldrequire intensive studies,

and were beyond the scope of this thesis.

Fourth, a land suitability analysis for dam construction was not carried out, due to

the limited time frame of the study. Within GH-LUDAS, the choice of the location of inserted

dams is not supported by a land suitability map, but requiresthe knowledge of experts. A

land suitability map would require in-depth knowledge of geological, pedological and hy-

drological data and processes, which is available only to a limited extent. Furthermore, a

simulation-based analysis showed that results on catchment level were not significantly in-

fluenced by changes in dam locations, although locally, the impacts were significant.

The final drawback of the model, and maybe the most substantial, lies in the dif-

ficulty of the validation of model results. Actually, the validation of agent-based models is

currently still a debated issue. While classical validation methods, e.g. sensitivity analysis

and comparing simulated data with observed data, have turned out to be unsuitable for agent-

based models, a number of validation strategies are proposed (see Bousquet and Le Page,

2004; Parker et al., 2003) and debated.

7.3 Recommendations

Since no model is universally appropriate, GH-LUDAS shouldundergo version-by-version

improvements, and the first version as proposed in this studydoes not claim to represent

the real-world human-environment system in the most realistic and fully integrated manner.

However, due to the model’s high flexibility, several methodological extensions regarding

human decision-making and ecological processes can be easily integrated. Each of these ex-

tensions should aim at a more realistic representation of the LUCC system, although there
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should be a lower limit to the detailedness of the model. The selection of such extensions

should thus be guided by finding a balance between a too coarseand a too detailed represen-

tation of involved processes. Furthermore, each version ofGH-LUDAS, including the current

one, should be validated in order to improve its credibilityfor decision-making support and

scientific purposes. In the following, we give recommendations for methodological exten-

sions and validation techniques for the current GH-LUDAS version.

• One of the most important processes that have not yet been integrated in the current

version is the process of land degradation. Severe land degradation has been observed

during the past decades in the Sudan-Savannah zone (of whichthe study area is part),

which are the result of natural processes such as soil erosion and climate change, as

well as of human-induced loss of soil fertility. Over-cultivation, over-grazing, lack of

application of fertilizer and conservation measures, and reduced fallow periods have led

to soil nutrient loss and decreasing agricultural production levels. Maps and models of

spatial soil erosion patterns have been developed by ZEF staff, which offer a possibility

to link soil erosion with land-cover change (e.g. conversion of grassland to bare land)

and crop production. However, the integration of human-induced land degradation

would require long-term observations in the study area, in order to establish a sub-

model of the long-term consequences of human decision-making on soil productivity,

and vice versa.

• The model user should be given the choice among alternative decision-making sub-

models in order to explore the sensitivity of sub-model choice on model results. More

research should be done on the formulization of different household decision-making

strategies to examine whether particular formulizations are appropriate for particular

decision-making situations. Knowledge of local decision-making processes as well as

model validation should guide the selection of an appropriate decision-making archi-

tecture. In contrast to the decision-making approach of bounded rational behavior used

in the current version, other approaches may reflect human behavior of local house-

holds more realistically, but also may have other shortcomings. One alternative could

be the use of the BDI (Belief-Desire-Intention) architecture, which assumes that the
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decisions of human agents are guided by their beliefs about other agents and their en-

vironment. However, the drawback of this approach lies in the qualitative nature of

beliefs, which impedes the quantification of the internal belief structure of a household

agent, and his subsequent reactions. However, the range of possible decision-making

architectures is manifold, and modelers can usually selectfreely among them according

to the mechanisms they want to focus on.

• A further challenge for the specification of the decision-making architecture is the in-

tegration of a learning mechanism. In reality, many decisions are influenced by past

experiences, which serve as a basis to estimate future benefits and deliberate among

options. In GH-LUDAS, currently no such mechanism is integrated. The k-nearest

neighbor algorithm, which is among the simplest of machine-learning algorithms, was

experimentally implemented in GH-LUDAS, resulting in a 10-fold decrease in comput-

ing speed. The integration of learning mechanisms in GH-LUDAS is thus still impeded

by the computing speed of current computers, but this may change in future computer

generations.

• Furthermore, as mentioned above, the economic situation interms of market prices is

assumed to remain as it was in 2006. This drawback could be compensated for by

integrating at least a global model of future market price fluctuations. IFPRI’s IM-

PACT model (International Model for Policy Analysis of Agricultural Commodities

and Trade) could be used to assess future world market pricesof a range of commodi-

ties until 2025. The model simulates changes in production and demand on the level of

regions and single countries, which aggregate to global demand and production func-

tions. Based on these functions, a global demand-supply balance then defines global

market prices for each year until 2025. However, deviationsfrom this global market

price are often caused by a lack of infrastructure and marketinformation, especially in

developing countries, which often lead to local irregularities in commodity prices. The

determination of such local price fluctuations for the studyarea remains a challenge for

GH-LUDAS.

• A land suitability map for dam construction could be developed to support policy-

makers in their decisions to find suitable locations for dams. Such a map could also
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support the realism of model results, as the placement of dams would follow realistic

assumptions. The understanding of engineering and hydrological processes, which are

required to establish such a decision-support map, could also be applied to an estima-

tion of dam water levels due to climatic changes, which have not been considered in

the current version of GH-LUDAS.

• The credibility of the model depends on how the internal structure represents the struc-

ture of the system modeled. To improve the understanding whythe model was built in

this way, detailed descriptions of social and environmental conditions and local agri-

cultural behavior have been given, upon which the structureof sub-models and range of

variables were grounded. Assumptions underlying the selection of variables have been

clearly stated and justified. Furthermore, graphical and narrative descriptions of the

model structure were given to enhance the model’s lucidity and clarity, and to serve as

a basis for expert assessment and comparative model-to-model studies. A documenta-

tion of GH-LUDAS will also be available as an ODD (Overview, Design concepts, and

Details) protocol, which is a documentation protocol aimedto enhance the description

of individual-based models and to convey the structure of the model in a unified man-

ner. Based on this protocol, other scientists will be enabled to retrace and understand

the model structure and involved variables.

• The credibility of the model should not only be enhanced by a transparent model de-

scription, but also by validation techniques such as hindcasting. With this technique,

instead of simulating the future, the model is run for a past period until present, and

the results are then compared to the current situation. The major drawback of this ap-

proach is the usual lack of past data necessary for model initialization. Therefore, a

hindcasting approach could only be based on an approximations of past environmental

and household data, which would clearly reduce the power of this method in terms of

validation.

• Another validation method lies in the comparison of the results with other types of

models for the same area. To validate simulated land-use/cover patterns, a statistical

GIS-based model could be developed, which extrapolates observed LUCC patterns into

the future. Based on classified images of several past pointsin time, transition proba-
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bilities among land-use and land-cover types can be calculated, which can be further

used to project land-use/cover patterns into the future.

7.4 General remarks about modeling

What are the lessons that can be drawn from this modeling effort, and in particular from the

use of the agent-based approach? The answer is far from clear. In general, it can be said that

modeling is one of those scientific areas which experience the most criticism and distrust,

especially from the non-modeling community. Especially among the social sciences, models

of human behavior are often regarded as unrealistic and simplistic in their assumptions. For

these reasons, what seems to be the most important challengefor a modeler is, apart from the

process of model building, the justification of the assumptions he/she made about the model.

With respect to the fact that many models have the reputationof claiming to be universally

valid, three things have to be mentioned. First, at least in the science of land-use/cover

change, it is widely acknowledged that the understanding ofinvolved processes should rely

not only on modeling efforts, but also on narrative descriptions and mental models.None of

these approaches should be considered to be superior. Computer as well as mental models

should be regarded as tools to improve future generations ofboth types of models. The second

important issue is that there is the frequent misconceptionthat models are hierarchically

ordered in terms of their realism. Different types of models are built for different types of

purposes in order to examine different types of problems. Each model has its limitations, and

it is easy to accuse models of neglecting some part of reality. Third, models, at least in LUCC

sciences, are rarely built completely objectively. The understanding of the modeler about the

system functioning is absolutely necessary, but also implicates a partly subjective view of the

system on the side of the modeler. Although the assumptions underlying the model should be

based on objective reasoning, a trace of subjectivity can never be eliminated.

With respect to the use of the agent-based approach for studying LUCC, several

aspects are important. If a realistic policy-related modelis the target of a study, as it was in

this case, it can be difficult to model the effects of hypothetical processes and policy inter-

ventions. As realistic agent-based models are usually based on statistical evaluation of real

data, only those processes can be modeled that can be measured at the point of data acqui-

sition. In other words, processes or reactions that do not take place in the study area (to
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some extent) can hardly be simulated, e.g. the adoption of a totally new crop in the future

or the effects of hypothetical policy interventions. Furthermore, if an explicit representation

of decision-making households is desired, multi-agent models usually need to be confined to

small study areas, and the transferability of model resultsto other areas remains limited. Such

case-specific models are often very data demanding, which results in extensive efforts of data

acquisition, statistical evaluation and model programming. Some former agent-based scien-

tists, among them LUCC scientist Couclelis (2001), doubt that the gain that can be derived

from these types of models compensate for the high effort need to develop them. These major

drawbacks are often ignored in agent-based LUCC studies, and this agent-based modeling is

often acclaimed as a new paradigm to model LUCC. It is therefore noteworthy to mention

that, the many strengths of the agent-based approach notwithstanding, modelers should be

aware of the limitations in the applicability of this approach.
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